OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10164–10173

Actively coupled cavity ringdown spectroscopy with low-power broadband sources

Christian Petermann and Peer Fischer  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10164-10173 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (851 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a coupling scheme for cavity enhanced absorption spectroscopy that makes use of an intracavity acousto-optical modulator to actively switch light into (and out of) a resonator. This allows cavity ringdown spectroscopy (CRDS) to be implemented with broadband nonlaser light sources with spectral power densities of less than 30μW/nm. Although the acousto-optical element reduces the ultimate detection limit by introducing additional losses, it permits absorptivities to be measured with a high dynamic range, especially in lossy environments. Absorption measurements for the forbidden transition of gaseous oxygen in air at ∼760nm are presented using a low-coherence cw-superluminescent diode. The same setup was electronically configured to cover absorption losses from 1.8×10−8cm−1 to 7.5% per roundtrip. This could be of interest in process analytical applications.

© 2011 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.4780) Lasers and laser optics : Optical resonators
(300.0300) Spectroscopy : Spectroscopy
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:

Original Manuscript: March 18, 2011
Revised Manuscript: April 29, 2011
Manuscript Accepted: April 29, 2011
Published: May 9, 2011

Christian Petermann and Peer Fischer, "Actively coupled cavity ringdown spectroscopy with low-power broadband sources," Opt. Express 19, 10164-10173 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  2. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992). [CrossRef] [PubMed]
  3. E. R. Crosson, P. Haar, G. A. Marcus, H. A. Schwettman, B. A. Paldus, T. G. Spence, and R. N. Zare, “Pulse-stacked cavity ring-down spectroscopy,” Rev. Sci. Instrum. 70, 4–10 (1999). [CrossRef]
  4. T. Gherman and D. Romanini, “Modelocked cavity–enhanced absorption spectroscopy,” Opt. Express 10, 1033–1042 (2002). [PubMed]
  5. J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Appl. Phys. B 80, 1027–1038 (2005). [CrossRef]
  6. K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ring-down spectroscopy,” Appl. Phys. B 94, 369–373 (2008). [CrossRef]
  7. G. Méjean, S. Kassi, and D. Romanini, “Measurement of reactive atmospheric species by ultraviolet cavity-enhanced spectroscopy with a mode-locked femtosecond laser,” Opt. Lett. 33, 1231–1233 (2008). [CrossRef] [PubMed]
  8. I. Ventrillard-Courtillot, T. Gonthiez, C. Clerici, and D. Romanini, “Multispecies breath analysis faster than a single respiratory cycle by optical-feedback cavity-enhanced absorption spectroscopy,” J. Biomed. Opt. 14, 064026 (2009). [CrossRef]
  9. S. M. Ball, J. M. Langridge, and R. L. Jones, “Broadband cavity enhanced absorption spectroscopy using light emitting diodes,” Chem. Phys. Lett. 398, 68–74 (2004). [CrossRef]
  10. S. E. Fiedler, A. Hese, and A. A. Ruth, “Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids,” Rev. Sci. Instrum. 76, 023107 (2005). [CrossRef]
  11. T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, “Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode,” Appl. Phys. B 94, 85–94 (2008). [CrossRef]
  12. I. Ventrillard-Courtillot, E. Sciamma O’Brien, S. Kassi, G. Méjean, and D. Romanini, “Incoherent broad-band cavity-enhanced absorption spectroscopy for simultaneous trace measurements of NO2 and NO3 with a LED source,” Appl. Phys. B 101, 661–669 (2010). [CrossRef]
  13. S. Ball and R. Jones, “Broadband Cavity Ring-Down Spectroscopy,” in Cavity Ring-Down Spectroscopy , G. Berden and R. Engeln, eds. (Wiley, 2010), pp. 57–88.
  14. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000). [CrossRef]
  15. E. O. Potma, C. Evans, X. S. Xie, R. J. Jones, and J. Ye, “Picosecond-pulse amplification with an external passive optical cavity,” Opt. Lett. 28, 1835–1837 (2003). [CrossRef] [PubMed]
  16. P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995). [CrossRef]
  17. P. S. Johnston and K. K. Lehmann, “Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source,” Opt. Express 16, 15013–15023 (2008). [CrossRef] [PubMed]
  18. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178–10188 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited