OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10232–10240

Ultrabroadband efficient intracavity XUV output coupler

Oleg Pronin, Vladimir Pervak, Ernst Fill, Jens Rauschenberger, Ferenc Krausz, and Alexander Apolonski  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10232-10240 (2011)
http://dx.doi.org/10.1364/OE.19.010232


View Full Text Article

Enhanced HTML    Acrobat PDF (1134 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an efficient intracavity XUV output coupler based on an anti-reflection-coated grazing incidence plate (GIP). Conceptually, GIP is an extension of a Brewster plate, affording low loss of the circulating fundamental light and serving as a highly efficient, extremely broadband output coupler for XUV. Due to the grazing incidence geometry, the short wavelength reflectivity can be extended to the keV range. The first GIP realized shows parameters close to the design. We discuss both the limitations of the GIP in comparison with other XUV output couplers and the applicability of the GIP extension at longer wavelengths, down to the MIR.

© 2011 OSA

OCIS Codes
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(310.1210) Thin films : Antireflection coatings
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)
(310.4165) Thin films : Multilayer design

ToC Category:
X-ray Optics

History
Original Manuscript: April 18, 2011
Revised Manuscript: May 3, 2011
Manuscript Accepted: May 6, 2011
Published: May 9, 2011

Citation
Oleg Pronin, Vladimir Pervak, Ernst Fill, Jens Rauschenberger, Ferenc Krausz, and Alexander Apolonski, "Ultrabroadband efficient intracavity XUV output coupler," Opt. Express 19, 10232-10240 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10232


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320(5883), 1614–1617 (2008). [CrossRef] [PubMed]
  2. M. Herrmann, M. Haas, U. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. Schüssler, T. Hänsch, and T. Udem, “Feasibility of coherent XUV spectroscopy on the 1S-2S transition in singly ionized helium,” Phys. Rev. A 79(5), 052505 (2009). [CrossRef]
  3. C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278(5338), 661–664 (1997). [CrossRef]
  4. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. 2(6), 109–124 (1966). [CrossRef]
  5. E. O. Potma, C. Evans, X. S. Xie, R. J. Jones, and J. Ye, “Picosecond-pulse amplification with an external passive optical cavity,” Opt. Lett. 28(19), 1835–1837 (2003). [CrossRef] [PubMed]
  6. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005). [CrossRef] [PubMed]
  7. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005). [CrossRef] [PubMed]
  8. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010). [CrossRef] [PubMed]
  9. A. Cingöz, D. C. Yost, J. Ye, A. Ruehl, M. E. Fermann, and I. Hartl, “Power scaling of high-repetition-rate HHG,” in International Conference on Ultrafast Phenomena, OSA Technical Digest (CD) (Optical Society of America, 2010), paper MD3.
  10. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010). [CrossRef] [PubMed]
  11. J. Kaster, I. Pupeza, T. Eidam, C. Jocher, E. Fill, J. Limpert, R. Holzwarth, B. Bernhardt, T. Udem, T.W. Hänsch, A. Tünnermann, F. Krausz, “Towards MW average powers in ultrafast high-repetition-rate enhancement cavities,” in High Intensity Lasers and High Field Phenomena, OSA Technical Digest (CD) (Optical Society of America, 2011), paper HFB4.
  12. P. Jaegle, Coherent Sources of XUV Radiation (Springer, 2006).
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998), Vols. 1 and 2.
  14. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett. 33(10), 1099–1101 (2008). [CrossRef] [PubMed]
  15. Y.-Y. Yang, F. Süßmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19(3), 1954–1962 (2011). [CrossRef] [PubMed]
  16. K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express 14(18), 8189–8197 (2006). [CrossRef] [PubMed]
  17. A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16(9), 6233–6239 (2008). [CrossRef] [PubMed]
  18. T. V. Amotchkina, “Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings,” Appl. Opt. 47(17), 3109–3113 (2008). [CrossRef] [PubMed]
  19. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35(4), 644–658 (1996). [CrossRef] [PubMed]
  20. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008). [CrossRef] [PubMed]
  21. http://www.optilayer.com/
  22. A. V. Smith, B. T. Do, J. Bellum, R. Schuster, and D. Collier, “Nanosecond 1064nm damage thresholds for bare and anti-reflection coated silica surfaces,” Proc. SPIE 7132, 71321T (2008). [CrossRef]
  23. R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994). [CrossRef] [PubMed]
  24. K. D. Moll, R. J. Jones, and J. Ye, “Nonlinear dynamics inside femtosecond enhancement cavities,” Opt. Express 13(5), 1672–1678 (2005). [CrossRef] [PubMed]
  25. T. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35(3), 441–444 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited