OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10317–10325

Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers

B. Ben Bakir, A. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10317-10325 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2560 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first demonstration of an electrically driven hybrid silicon/III–V laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100-nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain. The bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBRs) and a surface-grating coupler. The supermodes of this hybrid structure are controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the device almost all the field resides in the III–V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side-mode suppression ratio is as high as 20 dB, and the fiber-coupled output power is ~7 mW.

© 2011 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 10, 2011
Revised Manuscript: March 23, 2011
Manuscript Accepted: March 27, 2011
Published: May 11, 2011

B. Ben Bakir, A. Descos, N. Olivier, D. Bordel, P. Grosse, E. Augendre, L. Fulbert, and J. M. Fedeli, "Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers," Opt. Express 19, 10317-10325 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004). [CrossRef] [PubMed]
  2. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010). [CrossRef] [PubMed]
  3. Silicon photonics II, edited by D. Lockwood and L. Pavesi, Topics in Applied Physics, Springer Verlag (2010).
  4. B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low loss (<1dB) and Polarization-Insensitive Edge Fiber Couplers fabricated on 200 mm Silicon-on-Insulator wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010). [CrossRef]
  5. K. K. Lee, D. R. Lim, D. Pan, C. Hoepfner, W.-Y. Oh, K. Wada, L. C. Kimerling, K. P. Yap, and M. T. Doan, “Mode transformer for miniaturized optical circuits,” Opt. Lett. 30(5), 498–500 (2005). [CrossRef] [PubMed]
  6. W. Bogaerts, S. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, ““Silicon-on-Insulator Spectral Filters Fabricated with CMOS Technology,” J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010). [CrossRef]
  7. D. Marris-Morini, L. Vivien, J.-M. Fédéli, E. Cassan, Ph. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008). [CrossRef] [PubMed]
  8. L. Vivien, M. Rouvière, J.-M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007). [CrossRef] [PubMed]
  9. J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer,” Adv. Opt.Technol. 2008, 412518 (2008).
  10. H. Kroemer, T. Liu, and P. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1-4), 96–102 (1989). [CrossRef]
  11. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004). [CrossRef] [PubMed]
  12. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005). [CrossRef] [PubMed]
  13. B. Gelloz, A. Kojima, and N. Koshida, “Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high-pressure water vapor annealing,” Appl. Phys. Lett. 87(3), 031107 (2005). [CrossRef]
  14. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000). [CrossRef] [PubMed]
  15. K. Solehmainen, M. Kapulainen, P. Heimala, and K. Polamo, “Erbium doped waveguides fabricated with atomic layer deposition method,” IEEE Photon. Technol. Lett. 16(1), 194–196 (2004). [CrossRef]
  16. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010). [CrossRef] [PubMed]
  17. K. Kato and Y. Tohmori, “PLC hybrid integration technology and its application to photonic components,” IEEE J. Sel. Top. Quantum Electron. 6(1), 4–13 (2000). [CrossRef]
  18. J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, and T. Kato, “Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps,” IEEE Trans. Adv. Packag. 24(2), 569–575 (2001). [CrossRef]
  19. G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010). [CrossRef]
  20. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006). [CrossRef] [PubMed]
  21. X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett. 34(9), 1345–1347 (2009). [CrossRef] [PubMed]
  22. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007). [CrossRef] [PubMed]
  23. A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16(7), 4413–4419 (2008). [CrossRef] [PubMed]
  24. A. Yariv and X. K. Sun, “Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: A proposal and analysis,” Opt. Express 15(15), 9147–9151 (2007). [CrossRef] [PubMed]
  25. X. Sun and A. Yariv, “Engineering supermode silicon/III–V hybrid waveguides for laser oscillation,” J. Opt. Soc. Am. B 25(6), 923–926 (2008). [CrossRef]
  26. X. Sun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34(3), 280–282 (2009). [CrossRef] [PubMed]
  27. J. E. Bowers, J. Piprek, Y. J. Chiu, D. Lofgreen, P. Abraham, K. A. Black, and A. Karim, “Super lattice barrier 1528-nm vertical-cavity laser with 85°C continuous-wave operation,” IEEE Photon. Technol. Lett. 12(11), 1438–1440 (2000). [CrossRef]
  28. M. Kostrzewa, L. Di Cioccio, M. Zussy, J. C. Roussin, J. M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, and B. Aspar, “InP dies transferred onto silicon substrate for optical interconnects application,” Sens. Actuators A Phys. 125(2), 411–414 (2006). [CrossRef]
  29. A. Katz, B. E. Weir, and W. C. Dautremont-Smith, “Au/Pt/Ti contacts to p-In0.53Ga0.47As and n-InP layers formed by a single metallization common step and rapid thermal processing,” J. Appl. Phys. 68(3), 1123–1128 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited