OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10387–10409

Field test of quantum key distribution in the Tokyo QKD Network

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10387-10409 (2011)
http://dx.doi.org/10.1364/OE.19.010387


View Full Text Article

Enhanced HTML    Acrobat PDF (2295 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A secure communication network with quantum key distribution in a metropolitan area is reported. Six different QKD systems are integrated into a mesh-type network. GHz-clocked QKD links enable us to demonstrate the world-first secure TV conferencing over a distance of 45km. The network includes a commercial QKD product for long-term stable operation, and application interface to secure mobile phones. Detection of an eavesdropper, rerouting into a secure path, and key relay via trusted nodes are demonstrated in this network.

© 2011 OSA

OCIS Codes
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

History
Original Manuscript: March 10, 2011
Revised Manuscript: April 27, 2011
Manuscript Accepted: May 5, 2011
Published: May 11, 2011

Citation
M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, "Field test of quantum key distribution in the Tokyo QKD Network," Opt. Express 19, 10387-10409 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10387


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  2. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009). [CrossRef]
  3. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 5, 325–360 (2004).
  4. I. D. Quantique, http://www.idquantique.com/
  5. Q. Magi Technologies, Inc., http://www.magiqtech.com/MagiQ/Home.html
  6. QuintessenceLabs Pty Ltd, http://www.quintessencelabs.com/
  7. C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of the DARPA Quantum Network,” in Quantum Information and Computation III, E. J. Donkor, A. R. Pirich, and H. E. Brandt, eds., Proc. SPIE 5815, 138–149 (2005); arXiv:quant-ph/0503058v2.
  8. M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. 11(7), 075001 (2009). [CrossRef]
  9. T. Länger and G. Lenhart, “Standardization of quantum key distribution and the ETSI standardization initiative ISG-QKD,” N. J. Phys. 11(5), 055051 (2009). [CrossRef]
  10. SWISS QUANTUM, http://www.swissquantum.com/
  11. A. Mirza and F. Petruccione, “Realizing long-term quantum cryptography,” J. Opt. Soc. Am. B 27(6), A185–A188 (2010). [CrossRef]
  12. Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Express 13(2), 660–665 (2005). [CrossRef] [PubMed]
  13. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” N. J. Phys. 11(10), 105001 (2009). [CrossRef]
  14. D. Lancho, J. Martinez-Mateo, D. Elkouss, M. Soto, and V. Martin, “QKD in standard optical telecommunications networks,” Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Vol. 36, pp. 142–149: arXiv:1006.1858 [quant-ph] (2010).
  15. S. Wang, W. Chen, Z.-Q. Yin, Y. Zhang, T. Zhang, H.-W. Li, F.-X. Xu, Z. Zhou, Y. Yang, D.-J. Huang, L.-J. Zhang, F.-Y. Li, D. Liu, Y.-G. Wang, G.-C. Guo, and Z.-F. Han, “Field test of wavelength-saving quantum key distribution network,” Opt. Lett. 35(14), 2454–2456 (2010). [CrossRef] [PubMed]
  16. T.-Y. Chen, J. Wang, H. Liang, W.-Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W.-Q. Cai, L. Ju, L.-K. Chen, L.-J. Wang, Y. Gao, K. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, “Metropolitan all-pass and inter-city quantum communication network,” arXiv:1008.1508v2 [quant-ph] (2010).
  17. M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, and M. Sasaki, “Photon level crosstalk between parallel fibers installed in urban area,” Opt. Express 18(21), 22199–22207 (2010). [CrossRef] [PubMed]
  18. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers Systems and Signal Processing, Bangalore India (1984), pp. 175–179.
  19. W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91(5), 057901 (2003). [CrossRef] [PubMed]
  20. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94(23), 230504 (2005). [CrossRef] [PubMed]
  21. X.-B. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94(23), 230503 (2005). [CrossRef] [PubMed]
  22. K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A 68(2), 022317 (2003). [CrossRef]
  23. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992). [CrossRef] [PubMed]
  24. V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92(5), 057901 (2004). [CrossRef] [PubMed]
  25. A. Tanaka, M. Fujiwara, S. W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki, and A. Tomita, “Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization,” Opt. Express 16(15), 11354–11360 (2008). [CrossRef] [PubMed]
  26. S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. 35(13), 2133–2135 (2010). [CrossRef] [PubMed]
  27. S. Obana and A. Tanaka, “General purpose hash function family computer and shared key creating system,” Patent WO/2007/034685 (March 29, 2007).
  28. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72(1), 012326 (2005). [CrossRef]
  29. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, “Experimental quantum key distribution with decoy states,” Phys. Rev. Lett. 96(7), 070502 (2006). [CrossRef] [PubMed]
  30. M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with the decoy method,” Phys. Rev. A 76(1), 012329 (2007). [CrossRef]
  31. M. Hayashi, “General theory for decoy-state quantum key distribution with an arbitrary number of intensities,” N. J. Phys. 9(8), 284 (2007). [CrossRef]
  32. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96(16), 161102 (2010). [CrossRef]
  33. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007). [CrossRef]
  34. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16(23), 18790–18797 (2008). [CrossRef]
  35. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007). [CrossRef]
  36. G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” Lect. Notes Comput. Sci. 765, 410–423 (1994). [CrossRef]
  37. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007). [CrossRef]
  38. E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A 73(1), 012344 (2006). [CrossRef]
  39. T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express 17(11), 9053–9061 (2009). [CrossRef] [PubMed]
  40. The third international conference on Updating Quantum Cryptography and Communications (UQCC2010), http://www.uqcc2010.org/
  41. A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “A fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009). [CrossRef]
  42. The “Tokyo QKD Network video” of the network operation demonstrated during the conference UQCC2010 is available at http://www.uqcc2010.org/
  43. A. Vakhitov, V. Makarov, and D.-R. Hjelme, “Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography,” J. Mod. Opt. 48(13), 2023–2038 (2001).
  44. V. Makarov and D.-R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. 52(5), 691–705 (2005). [CrossRef]
  45. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A 73(2), 022320 (2006). [CrossRef]
  46. V. Makarov, A. Anisimov, and J. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A 74(2), 022313 (2006). [CrossRef]
  47. A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15(15), 9388–9393 (2007). [CrossRef] [PubMed]
  48. B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum crypto-systems,” Quantum Inf. Comput. 7, 73–82 (2007).
  49. C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum key distribution systems,” Phys. Rev. A 75(3), 032314 (2007). [CrossRef]
  50. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking experimental demonstration of time-shift attack against practical quantum key distribution systems,” Phys. Rev. A 78(4), 042333 (2008). [CrossRef]
  51. V. Makarov and J. Skaar, “Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols,” Quantum Inf. Comput. 8, 0622–0635 (2008).
  52. S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” N. J. Phys. 11(6), 065001 (2009). [CrossRef]
  53. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4(10), 686–689 (2010). [CrossRef]
  54. F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” N. J. Phys. 12(11), 113026 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited