OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10410–10422

Complex relaxation rates of the Drude metals and their effects on the lifetime and symmetry of plasmon resonances

Hyoung-In Lee and El-Hang Lee  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10410-10422 (2011)
http://dx.doi.org/10.1364/OE.19.010410


View Full Text Article

Enhanced HTML    Acrobat PDF (1164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Drude model for metal is extended to include complex relaxation rates. As a test for what happens to the surface plasmon resonances with such metals, the lifetime is examined for propagating waves across a single planar metal-dielectric interface. By analytically solving the dispersion relation being fourth-order in the complex frequency, group-velocity dispersion and quality factors are explicitly found. Due to the symmetry breaking between the forward and backward waves, standing waves are not allowed in general.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2160) Physical optics : Energy transfer
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 30, 2011
Revised Manuscript: May 5, 2011
Manuscript Accepted: May 6, 2011
Published: May 11, 2011

Citation
Hyoung-In Lee and El-Hang Lee, "Complex relaxation rates of the Drude metals and their effects on the lifetime and symmetry of plasmon resonances," Opt. Express 19, 10410-10422 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10410


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70(1), 1–87 (2007). [CrossRef]
  3. J. S. Yang, J.-H. Sung, and B.-H. O, “Novel elastic scattering model for the understanding of the Anomalous transmittance for Au nanoparticle layer,” Opt. Express 18(13), 13418–13424 (2010). [CrossRef] [PubMed]
  4. T. Savin and P. S. Doyle, “Role of a finite exposure time on measuring an elastic modulus using microrheology,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041106 (2005). [CrossRef] [PubMed]
  5. G. Cuniberti, M. Sassetti, and B. Kramer, “Ac conductance of a quantum wire with electron-electron interactions,” Phys. Rev. B 57(3), 1515–1526 (1998). [CrossRef]
  6. N. Nakai, N. Hayashi, and M. Machida, “Simulation studies for the vortex-depinning dynamics around a columnar defect in superconductors,” Physica C 468(15–20), 1270–1273 (2008). [CrossRef]
  7. N. Nakai, N. Hayashi, and M. Machida, “Direct numerical confirmation of pinning-induced sign change in the superconducting Hall effect in type-II superconductors,” Phys. Rev. B 83(2), 024507 (2011). [CrossRef]
  8. F. Hébert, M. Schram, R. T. Scalettar, W. B. Chen, and Z. Bai, “Hatano-Nelson model with a periodic potential,” Eur. Phys. J. B 79(4), 465–471 (2011). [CrossRef]
  9. V. A. Fedotov, A. Tsiatmas, J. H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, and N. I. Zheludev, “Temperature control of Fano resonances and transmission in superconducting metamaterials,” Opt. Express 18(9), 9015–9019 (2010). [CrossRef] [PubMed]
  10. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Direct observation of Bloch harmonics and negative phase velocity in photonic crystal waveguides,” Phys. Rev. Lett. 94(12), 123901 (2005). [CrossRef] [PubMed]
  11. A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light,” Phys. Rev. Lett. 99(17), 173603 (2007). [CrossRef] [PubMed]
  12. S. Zou, “Electromagnetic wave propagation in a multilayer silver particle,” Chem. Phys. Lett. 454(4–6), 289–293 (2008). [CrossRef]
  13. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007). [CrossRef] [PubMed]
  14. M. Staffaroni, J. Conway, S. Vedantam, J. Tang, and E. Yablonovitch, “Circuit analysis in metal-optics,” arXiv:1006.3126 [physics.optics].
  15. V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011). [CrossRef]
  16. A. Z. Abbasi, F. Amin, T. Niebling, S. Friede, M. Ochs, S. Carregal-Romero, J.-M. Montenegro, P. Rivera Gil, W. Heimbrodt, and W. J. Parak, “How colloidal nanoparticles could facilitate multiplexed measurements of different analytes with analyte-sensitive organic fluorophores,” ACS Nano 5(1), 21–25 (2011). [CrossRef] [PubMed]
  17. A. Haddadpour and Y. Yi, “Metallic nanoparticle on micro ring resonator for bio optical detection and sensing,” Biomed. Opt. Express 1(2), 378–384 (2010). [CrossRef]
  18. L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36(1–3), 259–269 (2004). [CrossRef]
  19. V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55(12), 7427–7444 (1997). [CrossRef]
  20. H.-I. Lee and J. Mok, “On the cubic zero-order solution of electromagnetic waves. I. Periodic slabs with lossy plasmas,” Phys. Plasmas 17(7), 072108 (2010). [CrossRef]
  21. H.-I. Lee and J. Mok, “On the cubic zero-order solution of electromagnetic waves. II. Isolated particles with lossy plasmas,” Phys. Plasmas 17(7), 072109 (2010). [CrossRef]
  22. H.-I. Lee, “Wave classification and resonant excitations in lossy metal-dielectric multilayers,” Photonics Nanostruct. Fundam. Appl. 8(3), 183–197 (2010). [CrossRef]
  23. R. W. D. Nickalls, “A new approach to solving the cubic: Cardan's solution revealed,” The Mathematical Gazette 77(480), 354–359 (1993). [CrossRef]
  24. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B Condens. Matter 50(23), 16835–16844 (1994). [CrossRef] [PubMed]
  25. A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: dispersive properties of surface plasmon polaritions in linear chains of metallic nanospheroids,” Phys. Rev. B 78(3), 035403 (2008). [CrossRef]
  26. A. Kaso and S. John, “Nonlinear Bloch waves in metallic photonic band-gap filaments,” Phys. Rev. A 76(5), 053838 (2007). [CrossRef]
  27. S. John and R. Wang, “Metallic photonic-band-gap filament architectures for optimized incandescent lighting,” Phys. Rev. A 78(4), 043809 (2008). [CrossRef]
  28. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 4 Fig. 2
 
Fig. 3 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited