OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10471–10484

Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing

Michael H. Frosz, Alessio Stefani, and Ole Bang  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10471-10484 (2011)
http://dx.doi.org/10.1364/OE.19.010471


View Full Text Article

Acrobat PDF (964 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present both experimental measurements and simulations for a simple fiber-optical liquid refractive index sensor, made using only commercially available components and without advanced postprocessing of the fiber. Despite the simplicity, we obtain the highest sensitivity experimentally demonstrated to date for aqueous solutions (refractive index around 1.33), which is relevant for extensions to biosensing. The sensor is based on measuring the spectral shift of peaks arising from four-wave mixing (FWM), when filling the holes of a microstructured fiber with different liquid samples and propagating nanosecond pulses through the silica-core of the fiber. To the best of our knowledge, this is also the first experiment where a liquid is filled into the holes of a solid-core microstructured fiber to control the phase-match conditions for FWM.

© 2011 OSA

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 31, 2011
Revised Manuscript: April 29, 2011
Manuscript Accepted: April 29, 2011
Published: May 12, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Michael H. Frosz, Alessio Stefani, and Ole Bang, "Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing," Opt. Express 19, 10471-10484 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10471


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors 7, 797–859 (2007). [CrossRef]
  2. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef] [PubMed]
  3. P. E. Hoiby, L. B. Nielsen, J. B. Jensen, T. P. Hansen, A. Bjarklev, and L. H. Pedersen, “Molecular immobilization and detection in a photonic crystal fiber,” (SPIE, 2004), vol. 5317, pp. 220–223. http://dx.doi.org/10.1117/12.528891 .
  4. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13, 5883–5889 (2005). [CrossRef] [PubMed]
  5. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006). [CrossRef] [PubMed]
  6. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26, 1048–1050 (2001). [CrossRef]
  7. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003). [CrossRef] [PubMed]
  8. M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 23, 1692–1699 (2006). [CrossRef]
  9. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16, 20834–20847 (2008). [CrossRef] [PubMed]
  10. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20, 2329–2337 (2003). [CrossRef]
  11. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004). [CrossRef]
  12. S. O. Konorov, A. B. Fedotov, A. M. Zheltikov, and R. B. Miles, “Phase-matched four-wave mixing and sensing of water molecules by coherent anti-Stokes Raman scattering in large-core-area hollow photonic-crystal fibers,” J. Opt. Soc. Am. B 22, 2049–2053 (2005). [CrossRef]
  13. P. D. Rasmussen, F. H. Bennet, D. N. Neshev, A. A. Sukhorukov, C. R. Rosberg, W. Krolikowski, O. Bang, and Y. S. Kivshar, “Observation of two-dimensional nonlocal gap solitons,” Opt. Lett. 34, 295–297 (2009). [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics 4th ed. (Academic Press, 2007).
  15. V. Tombelaine, A. Labruyère, J. Kobelke, K. Schuster, V. Reichel, P. Leproux, V. Couderc, R. Jamier, and H. Bartelt, “Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation,” Opt. Express 17, 15392–15401 (2009). [CrossRef] [PubMed]
  16. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett. 28, 1879–1881 (2003). [CrossRef] [PubMed]
  17. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  18. J. Lægsgaard, A. Bjarklev, and S. E. B. Libori, “Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation,” J. Opt. Soc. Am. B 20, 443–448 (2003). [CrossRef]
  19. D. N. Nikogosyan, Properties of optical and laser-related materials: a handbook (John Wiley & Sons Ltd., West Sussex, England, 1997).
  20. J. E. Bertie and Z. Lan, “The refractive index of colorless liquids in the visible and infrared: Contributions from the absorption of infrared and ultraviolet radiation and the electronic molar polarizability below 20 500 cm−1,” J. Chem. Phys. 103, 10152–10161 (1995). http://link.aip.org/link/?JCP/103/10152/1 .
  21. J. E. Bertie and Z. Lan, “Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25°C between 15,000 and 1 cm−1,” Appl. Spectrosc. 50, 1047–1057 (1996). http://as.osa.org/abstract.cfm?URI=as-50-8-1047 .
  22. The International Association for the Properties of Water and Steam, “Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure,” (1997). http://www.iapws.org/relguide/rindex.pdf .
  23. J. E. Bertie, S. L. Zhang, H. H. Eysel, S. Baluja, and M. K. Ahmed, “Infrared intensities of liquids XI: Infrared refractive indices from 8000 to 2 cm−1, absolute integrated intensities, and dipole moment derivatives of methanol at 25°C,” Appl. Spectrosc. 47, 1100–1114 (1993). [CrossRef]
  24. S. E. Wood, S. Langer, and R. Battino, “Refractive index and dispersion of the benzene-methanol system,” J. Chem. Phys. 32, 1389–1393 (1960). http://link.aip.org/link/?JCP/32/1389/1 .
  25. M. H. Frosz, “Dispersion-modulation by high material loss in microstructured polymer optical fibers,” Opt. Express 17, 17950–17962 (2009). [CrossRef] [PubMed]
  26. K. Okamoto, Fundamentals of Optical Waveguides 2nd ed. (Academic Press, 2006).
  27. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [CrossRef]
  28. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). http://link.aps.org/abstract/RMP/v78/p1135 .
  29. J. C. Travers, M. H. Frosz, and J. M. Dudley, Nonlinear Fibre Optics Overview (Cambridge University Press, 2010), chap. 3, Supercontinuum generation in optical fibers. ISBN 978-0-521-51480-4.
  30. J. Lægsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007). [CrossRef] [PubMed]
  31. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989). [CrossRef]
  32. M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16, 21076–21086 (2008). [CrossRef] [PubMed]
  33. P. D. Rasmussen, J. Lægsgaard, and O. Bang, “Degenerate four wave mixing in solid core photonic bandgap fibers,” Opt. Express 16, 4059–4068 (2008). [CrossRef] [PubMed]
  34. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770–3775 (2007). [CrossRef]
  35. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010). [CrossRef] [PubMed]
  36. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002). [CrossRef]
  37. H. R. Zelsmann, “Temperature dependence of the optical constants for liquid H2O and D2O in the far IR region,” J. Mol. Struct. 350, 95–114 (1995). [CrossRef]
  38. J. F. Mammone, S. K. Sharma, and M. Nicol, “Raman spectra of methanol and ethanol at pressures up to 100 kbar,” J. Phys. Chem. 84, 3130–3134 (1980). [CrossRef]
  39. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33, 563–565 (2008). http://ol.osa.org/abstract.cfm?URI=ol-33-6-563 .
  40. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34, 322–324 (2009). [CrossRef] [PubMed]
  41. B. T. Kuhlmey, S. Coen, and S. Mahmoodian, “Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis,” Opt. Express 17, 16306–16321 (2009). [CrossRef] [PubMed]
  42. W. Yuan, G. E. Town, and O. Bang, “Refractive index sensing in an all-solid twin-core photonic bandgap fiber,” IEEE Sensors J. 10, 1192–1199 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited