OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10518–10535

Sub-micron free-standing metal slabs with dielectric nano-voids of arbitrary shapes embedded beneath atomically-flat surface

Kiang Wei Kho, ZeXiang Shen, and Malini Olivo  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10518-10535 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thin metal slabs with plasmonic nano-voids buried within the skin depth (< 25 nm) of surface plasmon polaritons have been of theoretical as well as technical interests for many years due to its unique optical properties such as sharp absorbance dips and anti-crossing plasmonic dispersion characteristics. Unfortunately, such interesting plasmonic properties have not been experimentally reproduced, especially in the UV-Vis regime, owing to the involuntary surface roughness occurred in systems fabricated using conventional techniques. Here, we describe a versatile cryogenic-stripping approach for encapsulating a monolayer of nano-voids of virtually any arbitrary shapes underneath an atomically-smooth (δ < 0.55 nm) surface of a free-standing metal slab. By artificially varying the topography of the capping metal surface from ultra-smooth to moderately-rough, we show structural symmetricity in a nano-void-metal system can render the overall plasmonic responses becoming profoundly influenced by the surface smoothness. The current fabrication technique is thus of primary importance to the preparation of any kind of smooth nano-void-passivated metal slabs.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.0350) Other areas of optics : Other areas of optics
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

Original Manuscript: January 5, 2011
Revised Manuscript: March 31, 2011
Manuscript Accepted: March 31, 2011
Published: May 13, 2011

Kiang Wei Kho, ZeXiang Shen, and Malini Olivo, "Sub-micron free-standing metal slabs with dielectric nano-voids of arbitrary shapes embedded beneath atomically-flat surface," Opt. Express 19, 10518-10535 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002). [PubMed]
  2. I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94(5), 057401 (2005). [PubMed]
  3. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997). [PubMed]
  4. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23(17), 1331–1333 (1998).
  5. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000).
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [PubMed]
  7. N. E. Hecker, R. A. Höpfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75(11), 1577 (1999).
  8. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
  9. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92(10), 101501 (2008).
  10. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002). [PubMed]
  11. T. V. Teperik, V. V. Popov, F. J. García de Abajo, M. Abdelsalam, P. N. Bartlett, T. A. Kelf, Y. Sugawara, and J. J. Baumberg, “Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons,” Opt. Express 14(5), 1965–1972 (2006). [PubMed]
  12. K. Ohtaka, H. Miyazaki, and A. Lucas, “Collective modes of void-surface coupled system,” Phys. Rev. B 21(2), 467–478 (1980).
  13. T. V. Teperik, V. Popov, and F. García de Abajo, “Void plamons and total absorption of light in nanoporous metallic films,” Phys. Rev. B 71(8), 085408 (2005).
  14. G. Lerosey, D. F. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009).
  15. D. Ballester, M. S. Tame, and M. S. Kim, “Quantum theory of surface plasmon polariton scattering,” Phys. Rev. A 82(1), 012325 (2010).
  16. S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, “Confined plasmons in metallic nanocavities,” Phys. Rev. Lett. 87(17), 176801 (2001). [PubMed]
  17. T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85(18), 3968–3970 (2004).
  18. I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, “Surface-plasmon-coupled emission of quantum dots,” J. Phys. Chem. B 109(3), 1088–1093 (2005).
  19. D. E. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
  20. P. Nagpal, N. C. Lindquist, S. H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325(5940), 594–597 (2009). [PubMed]
  21. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S. H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10(4), 1369–1373 (2010). [PubMed]
  22. P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroscopic gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14(5), 2199–2208 (2002).
  23. A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Language 12(5), 1303–1311 (1996).
  24. P. Wagner, M. Hegner, H.-J. Guentherodt, and G. Semenza, “Formation and in situ modification of monolayers chemisorbed on ultraflat template stripped gold surface,” Language 11(10), 3867–3875 (1995).
  25. D. W. Mosley, B. Y. Chow, and J. M. Jacobson, “Solid-state bonding technique for template-stripped ultraflat gold substrates,” Langmuir 22(6), 2437–2440 (2006). [PubMed]
  26. J. Mazurkiewicz, F. J. Mearns, D. Losic, L. Weeks, E. R. Waclawik, C. T. Rogers, J. G. Shapter, and J. J. Gooding, “Cryogenic cleavage used in gold substrate production,” J. Vac. Sci. Technol. B 20(6), 2265–2270 (2002).
  27. D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited