OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10553–10562

Efficient generation of periodic and quasi-periodic non-diffractive optical fields with phase holograms

Victor Arrizón, David Sánchez de-la-Llave, Guadalupe Méndez, and Ulises Ruiz  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10553-10562 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1352 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The superposition of multiple plane waves with appropriate propagation vectors generates a periodic or quasi-periodic non-diffractive optical field. We show that the Fourier spectrum of the phase modulation of this field is formed by two disjoint parts, one of which is proportional to the Fourier spectrum of the field itself. Based on this result we prove that the non-diffractive field can be generated, with remarkable high accuracy and efficiency, in a Fourier domain spatial filtering setup, using a synthetic phase hologram whose transmittance is the phase modulation of the field. In a couple of cases this result is presented analytically, and in other cases the proof is computational and experimental.

© 2011 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(230.6120) Optical devices : Spatial light modulators
(070.3185) Fourier optics and signal processing : Invariant optical fields
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:

Original Manuscript: March 2, 2011
Revised Manuscript: May 10, 2011
Manuscript Accepted: May 11, 2011
Published: May 13, 2011

Victor Arrizón, David Sánchez de-la-Llave, Guadalupe Méndez, and Ulises Ruiz, "Efficient generation of periodic and quasi-periodic non-diffractive optical fields with phase holograms," Opt. Express 19, 10553-10562 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Kirk and A. L. Jones, “Phase-only complex-valued spatial filter,” J. Opt. Soc. Am. 61(8), 1023–1028 (1971).
  2. R. W. Cohn and M. Liang, “Approximating fully complex spatial modulation with pseudorandom phase-only modulation,” Appl. Opt. 33(20), 4406–4415 (1994). [PubMed]
  3. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38(23), 5004–5013 (1999).
  4. M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc. 197(3), 219–223 (2000). [PubMed]
  5. V. Arrizón, G. Méndez, and D. Sánchez-de-La-Llave, “Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators,” Opt. Express 13(20), 7913–7927 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-20-7913 . [PubMed]
  6. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, “Pixelated phase computer holograms for the accurate encoding of scalar complex fields,” J. Opt. Soc. Am. A 24(11), 3500–3507 (2007).
  7. V. Arrizón, D. Sánchez-de-la-Llave, U. Ruiz, and G. Méndez, “Efficient generation of an arbitrary nondiffracting Bessel beam employing its phase modulation,” Opt. Lett. 34(9), 1456–1458 (2009). [PubMed]
  8. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987).
  9. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6(1), 150–152 (1989).
  10. S. Chávez-Cerda, M. A. Meneses-Nava, and J. M. Hickmann, “Interference of traveling nondiffracting beams,” Opt. Lett. 23(24), 1871–1873 (1998).
  11. J. Molloy and M. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43(4), 241–258 (2002).
  12. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
  13. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
  14. K. Volke-Sepúlveda and R. Jáuregui, “All-optical 3D atomic loops generated with Bessel light fields,” J. Phys. At. Mol. Opt. Phys. 42(8), 085303 (2009).
  15. P. Xie and Z. Q. Zhang, “Multifrequency gap solitons in nonlinear photonic crystals,” Phys. Rev. Lett. 91(21), 213904 (2003). [PubMed]
  16. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28(9), 710–712 (2003). [PubMed]
  17. J. Xavier, P. Rose, B. Terhalle, J. Joseph, and C. Denz, “Three-dimensional optically induced reconfigurable photorefractive nonlinear photonic lattices,” Opt. Lett. 34(17), 2625–2627 (2009). [PubMed]
  18. J. Xavier, M. Boguslawski, P. Rose, J. Joseph, and C. Denz, “Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures,” Adv. Mater. (Deerfield Beach Fla.) 22(3), 356–360 (2010).
  19. W. D. Mao, J. W. Dong, Y. C. Zhong, G. Q. Liang, and H. Z. Wang, “Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography,” Opt. Express 13(8), 2994–2999 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-8-2994 . [PubMed]
  20. V. Arrizón, S. Chavez-Cerda, U. Ruiz, and R. Carrada, “Periodic and quasi-periodic non-diffracting wave fields generated by superposition of multiple Bessel beams,” Opt. Express 15(25), 16748–16753 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16748 . [PubMed]
  21. SLM HEO 1080 P, HOLOEYE Photonics AG.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited