OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10571–10586

Laser-induced thermophoresis of individual particles in a viscous liquid

Ross T. Schermer, Colin C. Olson, J. Patrick Coleman, and Frank Bucholtz  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10571-10586 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1366 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a detailed investigation of the motion of individual micro-particles in a moderately-viscous liquid in direct response to a local, laser-induced temperature gradient. By measuring particle trajectories in 3D, and comparing them to a simulated temperature profile, it is confirmed that the thermally-induced particle motion is the direct result of thermophoresis. The elevated viscosity of the liquid provides for substantial differences in the behavior predicted by various models of thermophoresis, which in turn allows measured data to be most appropriately matched to a model proposed by Brenner. This model is then used to predict the effective force resulting from thermophoresis in an optical trap. Based on these results, we predict when thermophoresis will strongly inhibit the ability of radiation pressure to trap nano-scale particles. The model also predicts that the thermophoretic force scales linearly with the viscosity of the liquid, such that choice of liquid plays a key role in the relative strength of the thermophoretic and radiation forces.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.5340) Other areas of optics : Photothermal effects
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: March 14, 2011
Revised Manuscript: April 18, 2011
Manuscript Accepted: May 1, 2011
Published: May 13, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Ross T. Schermer, Colin C. Olson, J. Patrick Coleman, and Frank Bucholtz, "Laser-induced thermophoresis of individual particles in a viscous liquid," Opt. Express 19, 10571-10586 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Piazza and A. Parola, “Thermophoresis in colloidal suspensions,” J. Phys. Condens. Matter 20(15), 153102 (2008).
  2. J. K. Platten, “The Soret effect: a review of recent experimental results,” J. Appl. Mech. 73(1), 5–15 (2006).
  3. H. Brenner, “Navier-Stokes revisited,” Physica A 349(1-2), 60–132 (2005).
  4. G. S. McNab and A. Meisen, “Thermophoresis in liquids,” J. Colloid Interface Sci. 44(2), 339–346 (1973).
  5. H. Brenner and J. R. Bielenberg, “A continuum approach to phoretic motions: thermophoresis,” Physica A 355(2-4), 251–273 (2005).
  6. M. E. Schimpf and S. N. Semenov, “Mechanism of polymer thermophoresis in nonaqueous solvents,” J. Phys. Chem. B 104(42), 9935–9942 (2000).
  7. S. Semenov and M. Schimpf, “Thermophoresis of dissolved molecules and polymers: Consideration of the temperature-induced macroscopic pressure gradient,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 011201 (2004). [PubMed]
  8. E. Ruckenstein, “Can phoretic motions be treated as interfacial tension gradient driven phenomena,” J. Colloid Interface Sci. 83(1), 77–81 (1981).
  9. A. Parola and R. Piazza, “Particle thermophoresis in liquids,” Eur Phys J E Soft Matter 15(3), 255–263 (2004). [PubMed]
  10. S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006). [PubMed]
  11. H. Brenner, “A nonmolecular derivation of Maxwell’s thermal creep boundary condition in gases and liquids via application of the LeChatelier-Braun principle to Maxwell’s thermal stress,” Phys. Fluids 21(5), 053602 (2009).
  12. O. Jovanovic, “Photophoresis: light-induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 889–901 (2009).
  13. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006).
  14. A. Regazzetti, M. Hoyos, and M. Martin, “Experimental evidence of thermophoresis of non-brownian particles in pure liquids and estimation of their thermophoretic mobility,” J. Phys. Chem. B 108(39), 15285–15292 (2004).
  15. S. Duhr and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96(16), 168301 (2006). [PubMed]
  16. R. Di Leonardo, F. Ianni, and G. Ruocco, “Colloidal attraction induced by a temperature gradient,” Langmuir 25(8), 4247–4250 (2009). [PubMed]
  17. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
  18. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008). [PubMed]
  19. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
  20. W. M. Haynes, ed., CRC Handbook of Chemistry and Physics, 91st ed., (CRC, 2010).
  21. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003).
  22. T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83(7), 969–977 (2009).
  23. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford, 1997).
  24. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9(8), S196–S203 (2007).
  25. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focused laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79-80, 1005–1017 (2003).
  26. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Calculation of the T-matrix: general considerations and application of the point-matching method,” J. Quant. Spectrosc. Radiat. Transf. 79-80, 1019–1029 (2003).
  27. T. Sun and A. S. Teja, “Density, viscosity and thermal conductivity of aqueous solutions of propylene glycol, dipropylene glycol, and tripropylene glycol between 290 K and 460 K,” J. Chem. Eng. Data 49(5), 1311–1317 (2004).
  28. E. Fällman and O. Axner, “Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers,” Appl. Opt. 42(19), 3915–3926 (2003). [PubMed]
  29. Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical traps with geometric aberrations,” Appl. Opt. 45(15), 3425–3429 (2006). [PubMed]
  30. J. P. Holman, Heat Transfer, 9th ed. (McGraw Hill, 2002).
  31. F. W. Schmidt, R. E. Henderson, and C. H. Wolgemuth, Introduction to Thermal Sciences (Wiley, 1984).
  32. S. Duhr, S. Arduini, and D. Braun, “Thermophoresis of DNA determined by microfluidic fluorescence,” Eur Phys J E Soft Matter 15(3), 277–286 (2004). [PubMed]
  33. T. Cosgrove, Colloid Science: Principles, Methods and Applications (Wiley, 2005).
  34. J. Berg, Wettability (Surfactant Science) (CRC, 1993).
  35. B. C. Hoke and E. F. Patton, “Surface tensions of propylene glycol + water,” J. Chem. Eng. Data 37(3), 331–333 (1992).
  36. K. K. Kundu and M. N. Das, “Autoprotolysis constants of ethylene glycol and propylene glycol and dissociation constants of some acids and bases in the solvents at 30° C,” J. Chem. Eng. Data 9(1), 82–86 (1964).
  37. H. J. Butt, K. Graf, and M. Kappl, Physics and Chemistry of Interfaces, (Wiley, 2003)
  38. H. Brenner, “Kinematics of volume transport,” Physica A 349(1-2), 11–59 (2005).
  39. H. Bruus, Theoretical Microfluidics (Oxford, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2280 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited