OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10587–10594

All-optical binary phase-coded UWB signal generation for multi-user UWB communications

Jianji Dong, Yuan Yu, Yin Zhang, Xiang Li, Dexiu Huang, and Xinliang Zhang  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10587-10594 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An all-optical incoherent scheme for generation of binary phase-coded ultra-wideband (UWB) signals is proposed and experimentally demonstrated. The binary phase coding is performed based on all-optical phase modulation in a semiconductor optical amplifier (SOA) and phase modulation to intensity modulation (PM-IM) conversion in a fiber delay interferometer (DI) that serves as a multichannel frequency discriminator. By locating the phase-modulated light waves at the positive and negative slopes of the DI transmission spectra, binary phase encoded UWB codes (0 and π) are generated. We also experimentally demonstrate a bipolar UWB coding system with a code length of 4, operating at 1.25 Gb/s. And the decoding is analyzed as well. Our proposed system has potential application in future high-speed UWB impulse radio over optical fiber access networks.

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 16, 2011
Revised Manuscript: April 20, 2011
Manuscript Accepted: April 23, 2011
Published: May 13, 2011

Jianji Dong, Yuan Yu, Yin Zhang, Xiang Li, Dexiu Huang, and Xinliang Zhang, "All-optical binary phase-coded UWB signal generation for multi-user UWB communications," Opt. Express 19, 10587-10594 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. FCC, Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems, (2002).
  2. M. Ran, B. I. Lembrikov, and Y. Ben Ezra, “Ultra-wideband Radio-Over-Optical fiber concepts, technologies and applications,” IEEE Photon. J. 2(1), 36–48 (2010). [CrossRef]
  3. J. Yao, “Photonics for Ultrawideband communications,” IEEE Microw. Mag. 10(4), 82–95 (2009). [CrossRef]
  4. J.-Y. Zheng, M.-J. Zhang, A.-B. Wang, and Y.-C. Wang, “Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback,” Opt. Lett. 35(11), 1734–1736 (2010). [CrossRef] [PubMed]
  5. S. Pan and J. Yao, “UWB-Over-Fiber Communications: Modulation and Transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010). [CrossRef]
  6. X. Yu, T. B. Gibbon, and I. T. Monroy, “Experimental Demonstration of All-Optical 781.25-Mb/s Binary Phase-Coded UWB Signal Generation and Transmission,” IEEE Photon. Technol. Lett. 21(17), 1235–1237 (2009). [CrossRef]
  7. X. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17(12), 9680–9687 (2009). [CrossRef] [PubMed]
  8. H. W. Wang, T. T. Le, and J. X. Cheng, “Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope,” Opt. Commun. 281(7), 1813–1822 (2008). [CrossRef]
  9. F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination,” Opt. Express 18(24), 24588–24594 (2010). [CrossRef] [PubMed]
  10. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier,” Opt. Lett. 32(10), 1223–1225 (2007). [CrossRef] [PubMed]
  11. Y. Dai and J. Yao, “Multi-User UWB-over-Fiber System Based on High-Chip-Count Phase Coding,” in Proceedings of OFC/NFOEC, (2008).
  12. S. Wang, H. Chen, M. Xin, M. Chen, and S. Xie, “Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture,” Opt. Lett. 34(20), 3092–3094 (2009). [CrossRef] [PubMed]
  13. Q. Wang and J. Yao, “Approach to all-optical bipolar direct-sequence ultrawideband coding,” Opt. Lett. 33(9), 1017–1019 (2008). [CrossRef] [PubMed]
  14. Y. Dai and J. Yao, “High-chip-count UWB bi-phase coding for multi-user UWB-over-fiber system,” J. Lightwave Technol. 27(11), 1448–1453 (2009). [CrossRef]
  15. P. Ou, Y. Zhang, and C.-X. Zhang, “Optical generation of binary-phase-coded, direct-sequence ultra-wideband signals by polarization modulation and FBG-based multi-channel frequency discriminator,” Opt. Express 16(7), 5130–5135 (2008). [CrossRef] [PubMed]
  16. E. Hamidi and A. M. Weiner, “Phase-Only Matched Filtering of Ultrawideband Arbitrary Microwave Waveforms via Optical Pulse Shaping,” J. Lightwave Technol. 26(15), 2355–2363 (2008). [CrossRef]
  17. I. S. Lin and A. M. Weiner, “Selective Correlation Detection of Photonically Generated Ultrawideband RF Signals,” J. Lightwave Technol. 26(15), 2692–2699 (2008). [CrossRef]
  18. F. G. David, S. Reza, A. F. Mark, and L. G. Alex, “All-Optical Correlator for High-Speed OOK and DPSK Signals,” in Proceedings of COTA/ICQI, CMC3, (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited