OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10604–10612

Broadband infrared meanderline reflective quarter-wave plate

Samuel L. Wadsworth and Glenn D. Boreman  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10604-10612 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1331 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel reflective quarter-wave plate comprised of subwavelength meanderline elements. The device is operational over the long-wave infrared (LWIR) spectrum, with significant spectral and angular bandwidths. Power reflection is approximately 70% over the majority of the LWIR. Efficient conversion from a 45° linear polarization state into circular polarization is demonstrated from finite-element electromagnetic simulations and from broadband polarimetric measurements.

© 2011 OSA

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(260.3060) Physical optics : Infrared
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

Original Manuscript: April 19, 2011
Revised Manuscript: May 6, 2011
Manuscript Accepted: May 6, 2011
Published: May 13, 2011

Samuel L. Wadsworth and Glenn D. Boreman, "Broadband infrared meanderline reflective quarter-wave plate," Opt. Express 19, 10604-10612 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. H. Korte, B. Jordanov, D. Kolev, and D. Tsankov, “Total reflection prisms as achromatic IR retarders,” Appl. Spectrosc. 42(8), 1394–1400 (1988). [CrossRef]
  2. R. M. A. Azzam and H. K. Khanfar, “In-line broadband 270 ° (3λ/4) chevron four-reflection wave retarders,” Appl. Opt. 47(27), 4878–4883 (2008). [CrossRef] [PubMed]
  3. E. Cojocaru, T. Julea, and F. Nichitiu, “Infrared thin-film totally reflecting quarter-wave retarders,” Appl. Opt. 30(28), 4124–4125 (1991). [CrossRef] [PubMed]
  4. R. M. A. Azzam and C. L. Spinu, “Achromatic angle-insensitive infrared quarter-wave retarder based on total internal reflection at the Si-SiO2 interface,” J. Opt. Soc. Am. A 21(10), 2019–2022 (2004). [CrossRef]
  5. J. Liu and R. M. A. Azzam, “Infrared quarter-wave reflection retarders designed with high-spatial-frequency dielectric surface-relief gratings on a gold substrate at oblique incidence,” Appl. Opt. 35(28), 5557–5562 (1996). [CrossRef] [PubMed]
  6. V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994). [CrossRef]
  7. Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express 17(4), 2871–2879 (2009). [CrossRef] [PubMed]
  8. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999). [CrossRef]
  9. K. C. Hwang, “Optimization of broadband twist reflector for Ku-band application,” Electron. Lett. 44(3), 210–211 (2008). [CrossRef]
  10. K. Y. Han and B. A. Lail, “Genetically-engineered meanderline twist reflector,” Antennas and Propagation Society International Symposium, AP-S (2008).
  11. J. Hanfling, G. Jerinic, and L. Lewis, “Twist reflector design using E-type and H-type modes,” IEEE Trans. Antenn. Propag. 29(4), 622–629 (1981). [CrossRef]
  12. B. A. Munk, Frequency-Selective Surfaces: Theory and Design (Wiley, 2000).
  13. S. L. Wadsworth and G. D. Boreman, “Analysis of throughput for multilayer infrared meanderline waveplates,” Opt. Express 18(13), 13345–13360 (2010). [CrossRef] [PubMed]
  14. J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007). [CrossRef]
  15. C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984). [CrossRef]
  16. R.-S. Chu and K.-M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antenn. Propag. 35(6), 652–661 (1987). [CrossRef]
  17. J.-C. Zhang, Y.-Z. Yin, and J.-P. Ma, “Multifunctional meander line polarizer,” Prog. Electromagn. Res. Lett. 6, 55–60 (2009). [CrossRef]
  18. P. A. Rizzi, Microwave Engineering: Passive Circuits (Prentice-Hall, 1988).
  19. C. S. R. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. A. M. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes,” Opt. Express 18(13), 13309–13320 (2010). [CrossRef] [PubMed]
  20. B. J. Rubin and B. Singh, “Study of meander line delay in circuit boards,” IEEE Trans. Microw. Theory Tech. 48(9), 1452–1460 (2000). [CrossRef]
  21. R.T. Remski, “Analysis of photonic bandgap surfaces using Ansoft HFSS,” Microwave J. 43, 190–198 (2000).
  22. N. R. Labadie and S. K. Sharma, “A novel compact volumetric metamaterial structure with asymmetric transmission and polarization conversion,” Metamaterials (Amst.) 4(1), 44–57 (2010). [CrossRef]
  23. W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi C 5(5), 1113–1116 (2008). [CrossRef]
  24. D. Goldstein, Polarized Light (Marcel Dekker, 2003).
  25. J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003). [CrossRef]
  26. J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited