OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10673–10678

Microlens array fabricated using electrohydrodynamic instability and surface properties

You-Jin Lee, Young Wook Kim, Young-Ki Kim, Chang-Jae Yu, Jin Seog Gwag, and Jae-Hoon Kim  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10673-10678 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (914 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We fabricated polarization-dependent and polarization-independent microlens arrays (MLA) through the electrohydrodynamic instability of the optically anisotropic organic layer. The anisotropic flow induced by the instability of the organic layer leads to making the lens profile on the patterned electrode. We can easily control the polarization dependence of the MLA by controlling the surface alignment properties, even with the optically anisotropic organic layer. This method is a straightforward, fast, and reliable process for MLA fabrication since it does not require cumbersome developing and molding processes.

© 2011 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.0230) Optical devices : Optical devices

ToC Category:
Optical Design and Fabrication

Original Manuscript: March 18, 2011
Revised Manuscript: May 5, 2011
Manuscript Accepted: May 5, 2011
Published: May 16, 2011

You-Jin Lee, Young Wook Kim, Young-Ki Kim, Chang-Jae Yu, Jin Seog Gwag, and Jae-Hoon Kim, "Microlens array fabricated using electrohydrodynamic instability and surface properties," Opt. Express 19, 10673-10678 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006). [PubMed]
  2. Y. Tanaka, M. Yamagata, Y. Komma, S. Mizuno, and K. Nagashima, “Lens design for optical head compatible with compact disk and digital versatile disk,” Jpn. J. Appl. Phys. 37(Part 1, No. 4B), 2179–2183 (1998).
  3. K. Rastani, C. Lin, and J. S. Patel, “Active-fiber star coupler that uses arrays of microlenses and liquid-crystal modulators,” Appl. Opt. 31(16), 3046–3050 (1992). [PubMed]
  4. M. T. Gale, J. Pedersen, H. Schütz, H. Povel, A. Gandorfer, P. Steiner, and P. N. Bernasconi, “Active alignment of replicated microlens arrays on a charge-coupled device imager,” Opt. Eng. 36(5), 1510–1517 (1997).
  5. T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, and H. Sato, “Ultraviolet-cured polymer microlens arrays,” Appl. Opt. 38(14), 2991–2996 (1999).
  6. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1(8), 759–766 (1990).
  7. J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
  8. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
  9. S.-M. Kim and S. Kang, “Replication qualities and optical properties of UV-moulded microlens arrays,” J. Phys. D Appl. Phys. 36(20), 2451–2456 (2003).
  10. X.-C. Yuan, W. X. Yu, N. Q. Ngo, and W. C. Cheong, “Cost-effective fabrication of microlenses on hybrid sol-gel glass with a high-energy beam-sensitive gray-scale mask,” Opt. Express 10(7), 303–308 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-303 . [PubMed]
  11. C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. S. Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
  12. H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, and S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13(9), 732–738 (2003).
  13. T. Scharf, “Static birefringent microlenses,” Opt. Lasers Eng. 43(3-5), 317–327 (2005).
  14. M. He, X. Yuan, N. Q. Ngo, W. C. Cheong, and J. Bu, “Reflow technique for the fabrication of an elliptical microlens array in sol-gel material,” Appl. Opt. 42(36), 7174–7178 (2003).
  15. D. B. Do, N. D. Lai, C. Y. Wu, J. H. Lin, and C. C. Hsu, “Fabrication of ellipticity-controlled microlens arrays by controlling the parameters of the multiple-exposure two-beam interference technique,” Appl. Opt. 50(4), 579–585 (2011). [PubMed]
  16. E. Schaffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrically induced structure formation and pattern transfer,” Nature 403(6772), 874–877 (2000). [PubMed]
  17. E. Schäffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, “Electrohydrodynamic instabilities in polymer films,” Europhys. Lett. 53(4), 518–524 (2001).
  18. M. D. Dickey, E. Collister, A. Raines, P. Tsiartas, T. Holcombe, S. V. Sreenivasan, R. T. Bonnecaze, and C. G. Willson, “Photocurable pillar arrays formed via electrohydrodynamic instabilities,” Chem. Mater. 18(8), 2043–2049 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited