OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10686–10691

Displacement Talbot lithography: a new method for high-resolution patterning of large areas

Harun H. Solak, Christian Dais, and Francis Clube  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10686-10691 (2011)
http://dx.doi.org/10.1364/OE.19.010686


View Full Text Article

Enhanced HTML    Acrobat PDF (1021 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Periodic micro and nano-structures can be lithographically produced using the Talbot effect. However, the limited depth-of-field of the self-images has effectively prevented its practical use, especially for high-resolution structures with periods less than 1 micrometer. In this article we show that by integrating the diffraction field transmitted by a grating mask over a distance of one Talbot period, one can obtain an effective image that is independent of the absolute distance from the mask. In this way high resolution periodic patterns can be printed without the depth-of-field limitation of Talbot self-images. For one-dimensional patterns the image obtained is shown to be related to the convolution of the mask transmission function with itself. This technique, which we call Displacement Talbot Lithography (DTL), enables high-resolution photolithography without the need for complex and expensive projection optics for the production of periodic structures like diffraction gratings or photonic crystals. Experimental results showing the printing of linear gratings and an array of holes on a hexagonal lattice are presented.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(090.1970) Holography : Diffractive optics
(110.5220) Imaging systems : Photolithography
(110.6760) Imaging systems : Talbot and self-imaging effects
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 28, 2011
Revised Manuscript: May 12, 2011
Manuscript Accepted: May 13, 2011
Published: May 16, 2011

Citation
Harun H. Solak, Christian Dais, and Francis Clube, "Displacement Talbot lithography: a new method for high-resolution patterning of large areas," Opt. Express 19, 10686-10691 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10686


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, ““Dip-Pen” nanolithography, ” Science 283(5402), 661–663 (1999). [CrossRef] [PubMed]
  2. S. R. J. Brueck, “Optical and interferometric lithography––nanotechnology enablers,” Proc. IEEE 93(10), 1704–1721 (2005). [CrossRef]
  3. T. A. Savas, M. L. Schattenburg, J. M. Carter, and H. I. Smith, “Large‐area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996). [CrossRef]
  4. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995). [CrossRef]
  5. W. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9, 403–405 (1836).
  6. D. J. Shir, S. Jeon, H. Liao, M. Highland, D. G. Cahill, M. F. Su, I. F. El-Kady, C. G. Christodoulou, G. R. Bogart, A. V. Hamza, and J. A. Rogers, “Three-dimensional nanofabrication with elastomeric phase masks,” J. Phys. Chem. B 111(45), 12945–12958 (2007). [CrossRef] [PubMed]
  7. D. C. Flanders, A. M. Hawryluk, and H. I. Smith, “Spatial period division – a new technique for exposing sub-micrometer linewidth periodic and quasi periodic patterns,” J. Vac. Sci. Technol. 16(6), 1949–1952 (1979). [CrossRef]
  8. C. Zanke, M. H. Qi, and H. I. Smith, “Large-area patterning for photonic crystals via coherent diffraction lithography,” J. Vac. Sci. Technol. B 22(6), 3352–3355 (2004). [CrossRef]
  9. H. H. Solak and Y. Ekinci, “Achromatic spatial frequency multiplication: a method for production of nanometer-scale periodic structures,” J. Vac. Sci. Technol. B 23(6), 2705–2710 (2005). [CrossRef]
  10. H. H. Solak, “A system and a method for generating periodic and/or quasi-periodic pattern on a sample.” Int’l. patent 1810085 (16 March 2011).
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Book Co., 1968), p. 48.
  12. Y. Bourgin, Y. Jourlin, O. Parriaux, A. Talneau, S. Tonchev, C. Veillas, P. Karvinen, N. Passilly, A. R. Md Zain, R. M. De La Rue, J. Van Erps, and D. Troadec, “100 nm period grating by high-index phase-mask immersion lithography,” Opt. Express 18(10), 10557–10566 (2010). [CrossRef] [PubMed]
  13. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am. 68(9), 1206–1210 (1978). [CrossRef]
  14. D. M. Tennant, T. L. Koch, P. P. Mulgrew, R. P. Gnall, F. Ostermeyer, and J.-M. Verdiell, “Characterization of near field holography grating masks for optoelectronics fabricated by electron beam lithography,” J. Vac. Sci. Technol. B 10(6), 2530–2535 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited