OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10698–10706

Inverse scattering problem in presence of a conducting cylinder

Jianhua Shen, Xudong Chen, Yu Zhong, and Lixin Ran  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10698-10706 (2011)
http://dx.doi.org/10.1364/OE.19.010698


View Full Text Article

Enhanced HTML    Acrobat PDF (1171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper deals with the inverse scattering problem, in which a conducting cylinder is placed near samples that are to be reconstructed. Due to multiple scattering effect, the radius of the conducting cylinder and its distance to samples play an important role in inverse scattering problem. The paper investigates the role of the conducting cylinder under different arrangement of transmitting/receiving antennas. Numerical simulations show that with a proper arrangement of the cylinder and transmitting/receiving antennas, it is possible to achieve high-resolution reconstruction results with fewer antennas than when the conducting cylinder is absent.

© 2011 OSA

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(290.3200) Scattering : Inverse scattering

ToC Category:
Scattering

History
Original Manuscript: January 18, 2011
Revised Manuscript: March 8, 2011
Manuscript Accepted: March 8, 2011
Published: May 17, 2011

Citation
Jianhua Shen, Xudong Chen, Yu Zhong, and Lixin Ran, "Inverse scattering problem in presence of a conducting cylinder," Opt. Express 19, 10698-10706 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10698


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Sentenac, C. Guerin, and P. Chaumet, “Influence of multiple scattering on the resolution of an imaging system: a Cramer-Rao analysis,” Opt. Express 15(3), 1340–1347 (2007). [CrossRef] [PubMed]
  2. K. Agarwal, X. Chen, and Y. Zhong, “A multipole-expansion based linear sampling method for solving inverse scattering problems,” Opt. Express 18(6), 6366–6381 (2007). [CrossRef]
  3. A. Sentenac, P. Chaumet, and K. Belkebir, “Beyond the Rayleigh criterion: Grating assisted far-field optical diffraction tomography,” Phys. Rev. Lett. 97(24), 243901 (2006). [CrossRef]
  4. J. Berezovsky, M. Borunda, and E. Heller, “Imaging coherent transport in graphene (part I): mapping universal conductance fluctuations,” Nanotechnology 21(27), 274013 (2010). [CrossRef] [PubMed]
  5. M. Braun, L. Chirolli, and G. Burkard, “Signature of chirality in scanning-probe imaging of charge flow in graphene,” Phys. Rev. B 77(11), 115433 (2008). [CrossRef]
  6. J. Li, H. Liu, and J. Zou, “Strengthened linear sampling method with a reference ball,” SIAM J. Sci. Comput. 31(6), 4013–4040 (2009). [CrossRef]
  7. X. Chen, “MUSIC imaging applied to total internal reflection tomography,” J. Opt. Soc. Am. A 25(2), 357–364 (2008). [CrossRef]
  8. P. Carney and J. Schotland, “Theory of total-internal reflection tomography,” J. Opt. Soc. Am. A 20(3), 542–547 (2003). [CrossRef]
  9. X. Chen and Y. Zhong, “Influence of multiple scattering on subwavelength imaging: transverse electric case,” J. Opt. Soc. Am. A 27(2), 245–250 (2010). [CrossRef]
  10. K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” J. Opt. Soc. Am. A 22(9), 1889–1897 (2005). [CrossRef]
  11. L. Crocco, M. D’Urso, and T. Isernia, “Inverse scattering from phaseless measurements of the total field on a closed curve,” J. Opt. Soc. Am. A 21(4), 622–631 (2004). [CrossRef]
  12. O. Bucci, L. Crocco, M. D’Urso, and T. Isernia, “Inverse scattering from phaseless measurements of the total field on open lines,” J. Opt. Soc. Am. A 23(10), 2566–2577 (2006). [CrossRef]
  13. L. Crocco, M. D’Urso, and T. Isernia, “Faithful non-linear imaging from only-amplitude measurements of incident and total fields,” Opt. Express 15(7), 3804–3815 (2007). [CrossRef] [PubMed]
  14. W. Chew and Y. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method,” IEEE Trans. Med. Imaging 9(2), 218–225 (1990). [CrossRef] [PubMed]
  15. S. Norton, “Iterative inverse scattering algorithms: Methods of computing Frechet derivatives,” J. Acoust. Soc. Am. 106(5), 2653–2660 (1999). [CrossRef]
  16. X. Chen, “Application of signal-subspace and optimization methods in reconstructing extended scatterers,” J. Opt. Soc. Am. A 26(4), 1022–1026 (2009). [CrossRef]
  17. X. Chen, “Subspace-based optimization method for solving inverse scattering problems,” IEEE Trans. Geosci. Remote Sens. 48(1), 42–49 (2010). [CrossRef]
  18. Y. Zhong and X. Chen, “Twofold subspace-based optimization method for solving inverse scattering problems,” Inverse Probl. 25(8), 085003 (2009). [CrossRef]
  19. J. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Trans. Antennas Propag. 13(3), 334–341 (1965). [CrossRef]
  20. L. Pan, X. Chen, Y. Zhong, and S. P. Yeo, “Comparison among the variants of subspace-based optimization method for addressing inverse scattering problems: transverse electric case,” J. Opt. Soc. Am. A 27(10), 2208–2215 (2010). [CrossRef]
  21. K. Agarwal, L. Pan, and X. Chen, “Subspace-Based Optimization Method for Reconstruction of 2-D Complex Anisotropic Dielectric Objects,” IEEE Trans. Microwave Theory Tech. 58(4), 1065–1074 (2010). [CrossRef]
  22. X. Ye, X. Chen, Y. Zhong, and K. Agarwal, “Subspace-based optimization method for reconstructing perfectly electric conductors,” Prog. Electromagn. Res. 100, 119–128 (2010). [CrossRef]
  23. Y. Zhong, X. Chen, and K. Agarwal, “An improved subspace-based optimization method and its implementation in solving three-dimensional inverse problems,” IEEE Trans. Geosci. Remote Sens. 48(10), 3763–3768 (2010). [CrossRef]
  24. Y. Zhong and X. Chen, “MUSIC imaging and electromagneitc inverse scattering of multiple-scattering small anisotropic spheres,” IEEE Trans. Antenn. Propag. 55(12), 3542–3549 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited