OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10714–10727

Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses

Isamu Miyamoto, Kristian Cvecek, and Michael Schmidt  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10714-10727 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1363 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thermal conduction model is presented, by which nonlinear absorptivity of ultrashort laser pulses in internal modification of bulk glass is simulated. The simulated nonlinear absorptivity agrees with experimental values with maximum uncertainty of ±3% in a wide range of laser parameters at 10ps pulse duration in borosilicate glass. The nonlinear absorptivity increases with increasing energy and repetition rate of the laser pulse, reaching as high as 90%. The increase in the average absorbed laser power is accompanied by the extension of the laser-absorption region toward the laser source. Transient thermal conduction model for three-dimensional heat source shows that laser energy is absorbed by avalanche ionization seeded by thermally excited free-electrons at locations apart from the focus at pulse repetition rates higher than 100kHz.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.2750) Materials : Glass and other amorphous materials
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Lasers and Laser Systems

Original Manuscript: February 1, 2011
Revised Manuscript: April 20, 2011
Manuscript Accepted: May 4, 2011
Published: May 17, 2011

Isamu Miyamoto, Kristian Cvecek, and Michael Schmidt, "Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses," Opt. Express 19, 10714-10727 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  2. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24(18), 1311–1313 (1999). [CrossRef]
  3. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44, L687–L689 (2005). [CrossRef]
  4. I. Miyamoto, A. Horn, and J. Gottmann, “Local melting of glass material and its application to direct fusion welding by ps-laser pulses,” J. Laser Micro/Nanoengineering 2, 7–14 (2007). [CrossRef]
  5. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  6. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003). [CrossRef]
  7. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13(2), 612–620 (2005). [CrossRef] [PubMed]
  8. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Ultrafast laser processing: new options for three-dimensional photonic structures,” J. Mod. Opt. 51, 2533–2542 (2004). [CrossRef]
  9. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  10. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008). [CrossRef]
  11. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  12. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficient and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999). [CrossRef]
  13. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15(16), 10303–10317 (2007). [CrossRef] [PubMed]
  14. K. Nahen and A. Vogel, “Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses – part II: transmission, scattering, and reflection,” J. Sel. Top. Quant. Electron. 2, 861–871 (1996). [CrossRef]
  15. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro/Nanoengineering 2, 57-63 (2007). [CrossRef]
  16. J. Bovatsek, A. Araia, and C. B. Schaffer, “Three-dimensional micromachining inside transparent materials using femtosecond laser pulses: new applications,” Proceedings of CLEO/Europe - EQEC2005 (2005).
  17. http://www.schott.com/special_applications/english/download/d263te.pdf .
  18. http://www.schott.com/special_applications/english/download/af45e.pdf .
  19. http://psec.uchicago.edu/glass/Schott%20B270%20Properties%20%20Knight%20Optical.pdf .
  20. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 353 (Oxford at the Clarendon Press, 1959).
  21. http://www.coresix.com/images/0211.pdf .
  22. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and L. Bergé, “Self-guided propagation of ultrashort IR laser pulses in fused silica,” Phys. Rev. Lett. 87(21), 213902 (2001). [CrossRef] [PubMed]
  23. A. E. Siegman and S. W. Townsent, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993). [CrossRef]
  24. I. Miyamoto and T. Hermann, “Characteristics of internal melting of glass for fusion welding using ps laser pulses with average power up to 8W,” Proc. 8th Int. Symp. On Laser Precision Microfabrication- LPM2007 (2007).
  25. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64, 3071–3073 (1994). [CrossRef]
  26. P. K. Kennedy, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: part I – theory,” IEEE J. Quantum Electron. 31, 2241–2249 (1995). [CrossRef]
  27. K. Morigaki, Physics of Amorphous Semiconductors (Imperial College Press, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited