OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10735–10746

Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements

Alberto Tosi, Alberto Dalla Mora, Franco Zappa, Angelo Gulinatti, Davide Contini, Antonio Pifferi, Lorenzo Spinelli, Alessandro Torricelli, and Rinaldo Cubeddu  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10735-10746 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1786 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In many time-domain single-photon measurements, wide dynamic range (more than 5 orders of magnitude) is required in short acquisition time (few seconds). We report on the results of a novel technique based on a time-gated Single-Photon Avalanche Diode (SPAD) able to increase the dynamic range of optical investigations. The optical signal is acquired only in well-defined time intervals. Very fast 200-ps gate-ON transition is used to avoid the undesired strong signal, which can saturate the detector, hide the fainter useful signal and reduce the dynamic range. In experimental measurements, we obtained a dynamic range approaching 8 decades in few minutes of acquisition.

© 2011 OSA

OCIS Codes
(000.2170) General : Equipment and techniques
(030.5260) Coherence and statistical optics : Photon counting
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(230.5170) Optical devices : Photodiodes
(300.6500) Spectroscopy : Spectroscopy, time-resolved

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 22, 2010
Revised Manuscript: April 19, 2011
Manuscript Accepted: April 19, 2011
Published: May 18, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Alberto Tosi, Alberto Dalla Mora, Franco Zappa, Angelo Gulinatti, Davide Contini, Antonio Pifferi, Lorenzo Spinelli, Alessandro Torricelli, and Rinaldo Cubeddu, "Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements," Opt. Express 19, 10735-10746 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. B. van Munster and T. W. J. Gadella, “Fluorescence lifetime imaging microscopy (FLIM),” Adv. Biochem. Eng. Biotechnol. 95, 143–175 (2005). [PubMed]
  2. E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol. 10(5), 409–416 (2006). [PubMed]
  3. J. R. Lacowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Plenum Press, 1999).
  4. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
  5. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005). [PubMed]
  6. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008). [PubMed]
  7. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988). [PubMed]
  8. Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150(1), 5–8 (1993). [PubMed]
  9. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [PubMed]
  10. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46(3), 879–896 (2001). [PubMed]
  11. B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions,” J. Biol. Chem. 148, 173–183 (1943).
  12. S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002). [PubMed]
  13. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer-Verlag, 2005).
  14. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt. 35(12), 1956–1976 (1996). [PubMed]
  15. A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon avalanche diode for wide dynamic range near infrared spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 16(4), 1023–1030 (2010).
  16. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13(4), 852–862 (2007).
  17. A. Gulinatti, P. Maccagnani, I. Rech, M. Ghioni, and S. Cova, “35 ps time resolution at room temperature with large area single photon avalanche diodes,” Electron. Lett. 41(5), 272–274 (2005).
  18. F. Zappa, A. Tosi, A. Dalla Mora, and S. Tisa, “SPICE modeling of single photon avalanche diodes,” Sens. Actuators A Phys. 153(2), 197–204 (2009).
  19. D. S. Bethune, R. G. Devoe, C. Kurtsiefer, C. T. Retterner, and W. P. Risk, “System for gated detection of optical pulses containing a small number of photons using an avalanche photodiode,” U.S. Patent 6218657 (2001).
  20. A. Tomita and K. Nakamura, “Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm,” Opt. Lett. 27(20), 1827–1829 (2002).
  21. C. Zhou, G. Wu, and H. P. Zeng, “Multigate single-photon detection and timing discrimination with an InGaAs/lnP avalanche photodiode,” Appl. Opt. 45(8), 1773–1776 (2006). [PubMed]
  22. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
  23. A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Single-photon avalanche diodes for the near-infrared range: detector and circuit issues,” J. Mod. Opt. 56(2), 299–308 (2009).
  24. F. Zappa, A. Tosi, and S. Cova, “InGaAs SPAD and electronics for low time jitter and low noise,” Proc. SPIE 6583, 65830E, 65830E–12 (2007).
  25. S. Cova, A. Lacaita, and G. Ripamonti, “Trapping phenomena in avalanche photodiodes on nanosecond scale,” IEEE Electron Device Lett. 12(12), 685–687 (1991).
  26. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
  27. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited