OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10776–10788

Fabrication of an asymmetric Bragg coupler-based polymeric filter with a single-grating waveguide

Wei-Ching Chuang, Yu-Tai Huang, Hui-Chi Lin, and An-Chen Lee  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10776-10788 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1849 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, a first report on fabricating an asymmetric Bragg coupler-based filter on polymeric waveguides without input-waveguide grating was revealed. The fabrication process we developed was using holographic interference techniques, capillary effect, soft lithography, and micro molding process. The transmission dip of about −9.2 dB and the 3 dB transmission bandwidth of about 0.125 nm were obtained from a filter.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(090.2880) Holography : Holographic interferometry
(160.5470) Materials : Polymers
(230.7380) Optical devices : Waveguides, channeled
(130.7408) Integrated optics : Wavelength filtering devices
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: February 23, 2011
Revised Manuscript: April 28, 2011
Manuscript Accepted: May 1, 2011
Published: May 18, 2011

Wei-Ching Chuang, Yu-Tai Huang, Hui-Chi Lin, and An-Chen Lee, "Fabrication of an asymmetric Bragg coupler-based polymeric filter with a single-grating waveguide," Opt. Express 19, 10776-10788 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Mechin, P. Grosso, and D. Bose, “Add-drop multiplexer with UV-written Bragg gratings and directional coupler in SiO2-Si integrated waveguides,” J. Lightwave Technol. 19(9), 1282–1286 (2001). [CrossRef]
  2. J. M. Simmons, “On determining the optimal optical reach for a long-haul network,” J. Lightwave Technol. 23(3), 1039–1048 (2005). [CrossRef]
  3. P. G. Arbués, G. M. Machuca, and A. Tzanakaki, “Comparative study of existing OADM and OXC architectures and technologies from the failure behavior perspective,” J. Opt. Netw. 6(2), 123–133 (2007). [CrossRef]
  4. T. Barwicz, M. A. Popović, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express 12(7), 1437–1442 (2004). [CrossRef] [PubMed]
  5. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007). [CrossRef] [PubMed]
  6. L. Eldada, C. Shing Yin, C. Poga, R. Glass, Blomquist, and R. A. Nonvood, “Integrated multichannel OADM’s using polymer Bragg grating MZI’s,” IEEE Photon. Technol. Lett. 10(10), 1416–1418 (1998). [CrossRef]
  7. S. Ahn and S. Shin, “Post-fabrication tuning of a polymeric grating-assisted co-directional coupler filter by photobleaching,” Opt. Commun. 194(4-6), 309–312 (2001). [CrossRef]
  8. T. Erdogan, “Optical add-drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157(1-6), 249–264 (1998). [CrossRef]
  9. M. Oh, H. Lee, M. Lee, J. Ahn, S. G. Han, and H. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides,” Appl. Phys. Lett. 73(18), 2543–2545 (1998). [CrossRef]
  10. L. Zhu, Y. Huang, W. M. J. Green, and A. Yariv, “Polymeric multi-channel bandpass filters in phase-shifted Bragg waveguide gratings by direct electron beam writing,” Opt. Express 12(25), 6372–6376 (2004). [CrossRef] [PubMed]
  11. W. C. Chuang, C. K. Chao, and C. T. Ho, “Fabrication of high-resolution periodical structure on polymer waveguides using a replication process,” Opt. Express 15(14), 8649–8659 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-14-8649 . [CrossRef] [PubMed]
  12. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  13. W. C. Chuang, A. C. Lee, C. K. Chao, and C. T. Ho, “Fabrication of optical filters based on polymer asymmetric Bragg couplers,” Opt. Express 17(20), 18003–18013 (2009). [CrossRef] [PubMed]
  14. J. Scheuer and A. Yariv, “Fabrication and characterization of low-loss polymeric waveguides and micro-ring,” J. Eur. Opt. Soc. Rapid Publ. 1, 06007 (2006). [CrossRef]
  15. D.-Y. Choi, S. Madden, A. Rode, R. Wang, B. Luther-Davies, N. J. Baker, and B. J. Eggleton, “Integrated shadow mask for sampled Bragg gratings in chalcogenide (As(2)S(3)) planar waveguides,” Opt. Express 15(12), 7708–7712 (2007). [CrossRef] [PubMed]
  16. J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82(22), 3823–3825 (2003). [CrossRef]
  17. R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng. 15(6), 1260–1264 (2005). [CrossRef]
  18. T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, “Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer,” Opt. Lett. 32(17), 2523–2525 (2007). [CrossRef] [PubMed]
  19. J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005). [CrossRef]
  20. L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM’s with broad tuning range,” IEEE Photon. Technol. Lett. 11(4), 448–450 (1999). [CrossRef]
  21. J. H. Lee, M. Y. Park, C. Y. Kim, S. H. Cho, W. Lee, G. Jeong, and B. W. Kim, “Tunable External Cavity Laser Based on Polymer Waveguide Platform for WDM Access Network,” IEEE Photon. Technol. Lett. 17(9), 1956–1958 (2005). [CrossRef]
  22. Y. Zhu, E. Simova, P. Berini, and C. P. Grover, “A comparison of wavelength dependent polarization dependent loss measurements in fiber gratings,” IEEE Trans. Instrum. Meas. 49(6), 1231–1239 (2000). [CrossRef]
  23. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited