OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10805–10812

Time resolved chirp measurements of gain switched semiconductor laser using a polarization based optical differentiator

Antonio Consoli, Jose Manuel G. Tijero, and Ignacio Esquivias  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10805-10812 (2011)
http://dx.doi.org/10.1364/OE.19.010805


View Full Text Article

Enhanced HTML    Acrobat PDF (1123 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel implementation of the “phase reconstruction using optical ultra fast differentiation” (PROUD) technique and apply it to characterize the time resolved chirp of a gain switched semiconductor laser. The optical temporal differentiator is a fiber based polarization interferometer. The method provides a fast and simple recovery of the instantaneous frequency from two temporal intensity measurements, obtained by changing the spectral response of the interferometer. Pulses with different shapes and durations of hundreds of picoseconds are fully characterized in amplitude and phase. The technique is validated by comparing the measured pulse spectra with the reconstructed spectra obtained from the intensity and the recovered phase.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 18, 2011
Revised Manuscript: April 30, 2011
Manuscript Accepted: May 12, 2011
Published: May 18, 2011

Citation
Antonio Consoli, Jose Manuel G. Tijero, and Ignacio Esquivias, "Time resolved chirp measurements of gain switched semiconductor laser using a polarization based optical differentiator," Opt. Express 19, 10805-10812 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10805


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. P. Vasil'ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63(12), 1997–2042 (2000). [CrossRef]
  2. I. A. Walmsley and C. Dorrer, “Characterization of ultrashort electromagnetic pulses,” Adv. Opt. Photon. 1(2), 308–437 (2009). [CrossRef]
  3. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic Publishers, 2000).
  4. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998). [CrossRef]
  5. C. Dorrer and I. Kang, “Highly sensitive direct characterization of femtosecond pulses by electro-optic spectral shearing interferometry,” Opt. Lett. 28(6), 477–479 (2003). [CrossRef] [PubMed]
  6. C. Dorrer and I. Kang, “Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms,” Opt. Lett. 27(15), 1315–1317 (2002). [CrossRef]
  7. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982). [CrossRef] [PubMed]
  8. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  9. N. S. Bergano, “Wavelength discriminator method for measuring dynamic chirp in DFB lasers,” Electron. Lett. 24(20), 1296–1297 (1988). [CrossRef]
  10. C. Laverdiere, A. Fekecs, and M. Tetu, “A new method for measuring time-resolved frequency chirp of high bit rate sources,” IEEE Photon. Technol. Lett. 15(3), 446–448 (2003). [CrossRef]
  11. K. Sato, S. Kuwahara, and Y. Miyamoto, “Chirp characteristics of 40-Gb/s directly modulated distributed-feedback laser diodes,” J. Lightwave Technol. 23(11), 3790–3797 (2005). [CrossRef]
  12. S. Tammela, H. Ludvigsen, T. Kajava, and M. Kaivola, “Time-resolved frequency chirp measurement using a silicon-wafer etalon,” IEEE Photon. Technol. Lett. 9(4), 475–477 (1997). [CrossRef]
  13. A. Villafranca, J. Lasobras, R. Escorihuela, R. Alonso, and I. Garcés, “Time-Resolved Chirp Measurements Using Complex Spectrum Analysis Based on Stimulated Brillouin Scattering” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OWD4.
  14. J. Debeau, B. Kowalski, and R. Boittin, “Simple method for the complete characterization of an optical pulse,” Opt. Lett. 23(22), 1784–1786 (1998). [CrossRef]
  15. F. Li, Y. Park, and J. Azaña, “Complete temporal pulse characterization based on phase reconstruction using optical ultrafast differentiation (PROUD),” Opt. Lett. 32(22), 3364–3366 (2007). [CrossRef] [PubMed]
  16. F. Li, Y. Park, and J. Azana, “Linear characterization of optical pulses with durations ranging from the picosecond to the nanosecond regime using ultrafast photonic differentiation,” J. Lightwave Technol. 27(21), 4623–4633 (2009). [CrossRef]
  17. P. M. Anandarajah, A. M. Clarke, C. Guignard, L. Bramerie, L. P. Barry, J. D. Harvey, and J. C. Simon, “System-performance analysis of optimized gain-switched pulse source employed in 40- and 80-Gb/s OTDM systems,” J. Lightwave Technol. 25(6), 1495–1502 (2007). [CrossRef]
  18. D. J. L. Birkin, E. U. Rafailov, W. Sibbett, L. Zhang, Y. Liu, and I. Bennion, “Near-transform-limited picosecond pulses from a gain-switched InGaAs diode laser with fiber Bragg gratings,” Appl. Phys. Lett. 79(2), 151–152 (2001). [CrossRef]
  19. K. Wada, S. Takamatsu, H. Watanebe, T. Matsuyama, and H. Horinaka, “Pulse-shaping of gain-switched pulse from multimode laser diode using fiber Sagnac interferometer,” Opt. Express 16(24), 19872–19881 (2008). [CrossRef] [PubMed]
  20. P. Dupriez, A. Piper, A. Malinowski, J. K. Sahu, M. Ibsen, B. C. Thomsen, Y. Jeong, L. M. B. Hickey, M. N. Zervas, J. Nilsson, and D. J. Richardson, “High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm,” IEEE Photon. Technol. Lett. 18(9), 1013–1015 (2006). [CrossRef]
  21. M. Poelker, “High power gain‐switched diode laser master oscillator and amplifier,” Appl. Phys. Lett. 67(19), 2762–2765 (1995). [CrossRef]
  22. M. Kumar, C. Xia, X. Ma, V. V. Alexander, M. N. Islam, F. L. Terry, C. C. Aleksoff, A. Klooster, and D. Davidson, “Power adjustable visible supercontinuum generation using amplified nanosecond gain-switched laser diode,” Opt. Express 16(9), 6194–6201 (2008). [CrossRef] [PubMed]
  23. N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, “Terahertz amplifier based on gain switching in a quantum cascade laser,” Nat. Photonics 3(12), 715–719 (2009). [CrossRef]
  24. R. Slavík, Y. Park, M. Kulishov, R. Morandotti, and J. Azaña, “Ultrafast all-optical differentiators,” Opt. Express 14(22), 10699–10707 (2006). [CrossRef] [PubMed]
  25. R. S. Vodhanel, “5 Gbit/s Direct Optical DPSK Modulation of a 1530-nm DFB Laser,” IEEE Photon. Technol. Lett. 1(8), 218–220 (1989). [CrossRef]
  26. R. S. Vodhanel and S. Tsuji, “12 GHz FM Bandwidth for a 1530 nm DFB Laser,” Electron. Lett. 24(22), 1359–1361 (1988). [CrossRef]
  27. H. Liu, Y. Ogawa, and S. Oshiba, “Generation of an extremely short single mode pulse (∼2 ps) by fiber compression of a gain‐switched pulse from a 1.3 μm distributed‐feedback laser diode,” Appl. Phys. Lett. 59(11), 1284–1286 (1991). [CrossRef]
  28. L. Barry, B. Thomsen, J. Dudley, and J. Harvey, “Characterization of 1.55-mu m pulses from a self-seeded gain-switched Fabry-Perot laser diode using frequency-resolved optical gating,” IEEE Photon. Technol. Lett. 10(7), 935–937 (1998). [CrossRef]
  29. F. Li, Y. Park, and J. Azaña, “Single-shot real-time frequency chirp characterization of telecommunication optical signals based on balanced temporal optical differentiation,” Opt. Lett. 34(18), 2742–2744 (2009). [CrossRef] [PubMed]
  30. Y. Park, M. Scaffardi, L. Potì, and J. Azaña, “Simultaneous single-shot real-time measurement of the instantaneous frequency and phase profiles of wavelength-division-multiplexed signals,” Opt. Express 18(6), 6220–6229 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited