OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10813–10823

Pulse train fluorescence technique for measuring triplet state dynamics

Leonardo De Boni, Paulo L. Franzen, Pablo J. Gonçalves, Iouri E. Borissevitch, Lino Misoguti, Cleber R. Mendonça, and Sergio C. Zilio  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10813-10823 (2011)
http://dx.doi.org/10.1364/OE.19.010813


View Full Text Article

Enhanced HTML    Acrobat PDF (1149 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a method to study the dynamics of triplet formation based on the fluorescence signal produced by a pulse train. Basically, the pulse train acts as sequential pump-probe pulses that precisely map the excited-state dynamics in the long time scale. This allows characterizing those processes that affect the population evolution of the first excited singlet state, whose decay gives rise to the fluorescence. The technique was proven to be valuable to measure parameters of triplet formation in organic molecules. Additionally, this single beam technique has the advantages of simplicity, low noise and background-free signal detection.

© 2011 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Spectroscopy

History
Original Manuscript: March 28, 2011
Revised Manuscript: May 14, 2011
Manuscript Accepted: May 15, 2011
Published: May 18, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Leonardo De Boni, Paulo L. Franzen, Pablo J. Gonçalves, Iouri E. Borissevitch, Lino Misoguti, Cleber R. Mendonça, and Sergio C. Zilio, "Pulse train fluorescence technique for measuring triplet state dynamics," Opt. Express 19, 10813-10823 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10813


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. W. Pogue, T. Momma, H. C. Wu, and T. Hasan, “Transient absorption changes in vivo during photodynamic therapy with pulsed-laser light,” Br. J. Cancer 80(3-4), 344–351 (1999). [CrossRef] [PubMed]
  2. M. E. Thompson, “The evolution of organometallic complexes in organic light-emitting devices,” Mater. Res. Bull. 32(09), 694–701 (2007). [CrossRef]
  3. B. W. Pogue, B. Ortel, N. Chen, R. W. Redmond, and T. Hasan, “A photobiological and photophysical-based study of phototoxicity of two chlorins,” Cancer Res. 61(2), 717–724 (2001). [PubMed]
  4. W. R. Dawson and M. Windsor, “An eye protective panel for flash-blindness protection using triplet state photochromism,” Appl. Opt. 8(5), 1045–1050 (1969). [CrossRef] [PubMed]
  5. P. Miles, “Bottleneck optical pulse limiters revisited,” Appl. Opt. 38(3), 566–570 (1999). [CrossRef]
  6. J. H. Chou, M. E. Kosal, H. S. Nalwa, N. A. Rakow, and K. S. Suslick, “Applications of porphyrins and metalloporphyrins to materials chemistry,” in The Porphyrin Handbook, K. Kadish, K. Smith, and R. Guillard, eds. (Academic Press, 2000), Chap. 41.
  7. S. Haneder, E. Da Como, J. Feldmann, J. M. Lupton, C. Lennartz, P. Erk, E. Fuchs, O. Molt, I. Munster, C. Schildknecht, and G. Wagenblast, “Controlling the radiative rate of deep-blue electrophosphorescent organometallic complexes by singlet-triplet gap engineering,” Adv. Mater. (Deerfield Beach Fla.) 20(17), 3325–3330 (2008). [CrossRef]
  8. T. G. Pavlopoulos, “Measurement of molar triplet extinction coefficients of organic-molecules by means of cw laser excitation,” J. Opt. Soc. Am. 63(2), 180–184 (1973). [CrossRef]
  9. S. Speiser and M. Orenstein, “Spatial light modulation via optically induced absorption changes in molecules,” Appl. Opt. 27(14), 2944–2948 (1988). [CrossRef] [PubMed]
  10. A. R. Horrocks, T. Medinger, and F. Wilkinson, “Solvent dependence of quantum yield of triplet state production of 9-phenylanthracene,” Photochem. Photobiol. 6(1), 21–28 (1967). [CrossRef]
  11. G. Burdzinski, M. Bayda, G. L. Hug, M. Majchrzak, B. Marciniec, and B. Marciniak, “Time-resolved studies on the photoisomerization of a phenylene-silylene-vinylene type compound in its first singlet excited state,” J. Lumin. 131(4), 577–580 (2011). [CrossRef]
  12. M. Pineiro, A. L. Carvalho, M. M. Pereira, A. M. R. Gonsalves, L. G. Arnaut, and S. J. Formosinho, “Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies,” Chemistry 4(11), 2299–2307 (1998). [CrossRef]
  13. B. Fletcher and J. J. Grabowski, “Photoacoustic calorimetry—an undergraduate physical-organic experiment,” J. Chem. Educ. 77(5), 640–645 (2000). [CrossRef]
  14. Y. Harada, T. Suzuki, T. Ichimura, and Y. Z. Xu, “Triplet formation of 4-thiothymidine and its photosensitization to oxygen studied by time-resolved thermal lensing technique,” J. Phys. Chem. B 111(19), 5518–5524 (2007). [CrossRef] [PubMed]
  15. T. Suzuki, U. Okuyama, and T. Ichimura, “Double proton transfer reaction of 7-azaindole dimer and complexes studied by time-resolved thermal lensing technique,” J. Phys. Chem. A 101(38), 7047–7052 (1997). [CrossRef]
  16. L. Misoguti, C. R. Mendonca, and S. C. Zilio, “Characterization of dynamic optical nonlinearities with pulse trains,” Appl. Phys. Lett. 74(11), 1531–1533 (1999). [CrossRef]
  17. C. R. Mendonça, L. Gaffo, L. Misoguti, W. C. Moreira, O. N. Oliveira, and S. C. Zilio, “Characterization of dynamic optical nonlinearities in ytterbium bis-phthalocyanine solution,” Chem. Phys. Lett. 323(3-4), 300–304 (2000). [CrossRef]
  18. P. Goncalves, L. Boni, N. Neto, J. Rodrigues, S. Zilio, and I. Borissevitch, “Effect of protonation on the photophysical properties of meso-tetra(sulfonatophenyl) porphyrin,” Chem. Phys. Lett. 407(1-3), 236–241 (2005). [CrossRef]
  19. P. J. Gonçalves, L. P. F. Aggarwal, C. A. Marquezin, A. S. Ito, L. De Boni, N. M. B. Neto, J. J. Rodrigues, S. C. Zilio, and I. E. Borissevitch, “Effects of interaction with CTAB micelles on photophysical characteristics of meso-tetrakis(sulfonatophenyl) porphyrin,” J. Photochem. Photobiol., A 181(2-3), 378–384 (2006). [CrossRef]
  20. P. J. Gonçalves, L. De Boni, I. E. Borissevitch, and S. C. Zílio, “Excited state dynamics of meso-tetra(sulphonatophenyl) metalloporphyrins,” J. Phys. Chem. A 112(29), 6522–6526 (2008). [CrossRef] [PubMed]
  21. P. L. Franzen, L. Misoguti, and S. C. Zilio, “Hyper-Rayleigh scattering with picosecond pulse trains,” Appl. Opt. 47(10), 1443–1446 (2008). [CrossRef] [PubMed]
  22. S. Reindl and A. Penzkofer, “Triplet quantum yield determination by picosecond laser double-pulse fluorescence excitation,” Chem. Phys. 213(1-3), 429–438 (1996). [CrossRef]
  23. S. Reindl and A. Penzkofer, “Higher excited-state triplet-singlet intersystem crossing of some organic dyes,” Chem. Phys. 211(1-3), 431–439 (1996). [CrossRef]
  24. N. K. M. N. Srinivas, S. V. Rao, and D. N. Rao, “Saturable and reverse saturable absorption of Rhodamine B in methanol and water,” J. Opt. Soc. Am. B 20(12), 2470–2479 (2003). [CrossRef]
  25. P. C. Beaumont, D. G. Johnson, and B. J. Parsons, “Photophysical properties of laser-dyes - picosecond laser flash-photolysis studies of rhodamine-6g, rhodamine-b and rhodamine-101,” J. Chem. Soc., Faraday Trans. 89(23), 4185–4191 (1993). [CrossRef]
  26. M. Enescu, K. Steenkeste, F. Tfibel, and M.-P. Fontaine-Aupart, “Femtosecond relaxation processes from upper excited states of tetrakis(N-methyl-4-pyridyl)porphyrins studied by transient absorption spectroscopy,” Phys. Chem. Chem. Phys. 4(24), 6092–6099 (2002). [CrossRef]
  27. P. J. Gonçalves, P. L. Franzen, D. S. Correa, L. M. Almeida, M. Takara, A. S. Ito, S. C. Zílio, and I. E. Borissevitch, “Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP),” Spectrochim. Acta [A] (accepted), doi:.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 5 Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited