OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10880–10885

Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation

Fuxing Gu, Pan Wang, Huakang Yu, Bing Guo, and Limin Tong  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10880-10885 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (900 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate broadband optical quenching of photoconductivity in CdSe single nanowires with low excitation power. Using 1550-nm-wavelength light with 10-nW power for waveguiding excitation, we observe a typical responsivity of 0.5 A/W for quenching the photoconductivity established by 10-µW 660-nm-wavelength background light in a 403-nm-diameter CdSe nanowire, with detectable limit of the quenching power down to pW level at room temperature, which is several orders of magnitude lower than those reported previously. This large quenching effect originates from the enhanced light-defect interaction in the nanowires via waveguiding excitation. These results open new opportunities for noninvasive characterization of deep-level defect states in low-dimensional semiconductor nanomaterials, and novel optoelectronic applications of semiconductor nanowires such as high-sensitive broadband photodetection.

© 2011 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(250.0250) Optoelectronics : Optoelectronics
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: March 25, 2011
Revised Manuscript: May 1, 2011
Manuscript Accepted: May 3, 2011
Published: May 19, 2011

Fuxing Gu, Pan Wang, Huakang Yu, Bing Guo, and Limin Tong, "Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation," Opt. Express 19, 10880-10885 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Mater. Today 9(10), 18–27 (2006). [CrossRef]
  2. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics 3(10), 569–576 (2009). [CrossRef]
  3. T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors,” Sensors (Basel Switzerland) 9(8), 6504–6529 (2009). [CrossRef]
  4. C. Soci, A. Zhang, X. Y. Bao, H. Kim, Y. Lo, and D. L. Wang, “Nanowire photodetectors,” J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010). [CrossRef] [PubMed]
  5. D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008). [CrossRef]
  6. R. H. Bube, Photoelectronic Properties of Semiconductors (Cambridge University Press, 1992).
  7. R. H. Bube, “Infrared quenching and a unified description of photoconductivity phenomena in cadmium sulfide and selenide,” Phys. Rev. 99(4), 1105–1116 (1955). [CrossRef]
  8. L. Grabner, “Optical quenching of photoconductivity near the band edge in CdS,” Phys. Rev. Lett. 14(14), 551–554 (1965). [CrossRef]
  9. L. Johnson and H. Levinstein, “Infrared properties of gold in germanium,” Phys. Rev. 117(5), 1191–1203 (1960). [CrossRef]
  10. Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, and D. K. Wickenden, “Optical quenching of photoconductivity in GaN photoconductors,” J. Appl. Phys. 82(5), 2707–2709 (1997). [CrossRef]
  11. T. Y. Lin, H. C. Yang, and Y. F. Chen, “Optical quenching of the photoconductivity in n-type GaN,” J. Appl. Phys. 87(7), 3404–3408 (2000). [CrossRef]
  12. S. Cai, G. Parish, G. A. Umana-Membreno, J. M. Dell, and B. D. Nener, “Optical quenching of photoconductivity in undoped n-GaN,” J. Appl. Phys. 95(3), 1081–1088 (2004). [CrossRef]
  13. W. Ursaki, I. M. Tiginyanu, P. C. Ricci, A. Anedda, S. Hubbard, and D. Pavlidis, “Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation,” J. Appl. Phys. 94(6), 3875–3882 (2003). [CrossRef]
  14. Q.-F. Hou, X.-L. Wang, H.-L. Xiao, C.-M. Wang, C.-B. Yang, and J.-M. Li, “Variation of optical quenching of photoconductivity with resistivity in unintentional doped GaN,” Chin. Phys. Lett. 27(5), 057104 (2010). [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  16. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater. (Deerfield Beach Fla.) 14(2), 158–160 (2002). [CrossRef]
  17. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006). [CrossRef] [PubMed]
  18. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett. 7(4), 1003–1009 (2007). [CrossRef] [PubMed]
  19. Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee, “Photoresponse properties of CdSe single-nanoribbon photodetectors,” Adv. Funct. Mater. 17(11), 1795–1800 (2007). [CrossRef]
  20. A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H. G. Xing, and D. Jena, “Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids,” Nano Lett. 7(10), 2999–3006 (2007). [CrossRef] [PubMed]
  21. Z. He, J. Jie, W. Zhang, W. Zhang, L. Luo, X. Fan, G. Yuan, I. Bello, and S.-T. Lee, “Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping,” Small 5(3), 345–350 (2009). [CrossRef]
  22. D. S. Deng, N. D. Orf, S. Danto, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments,” Appl. Phys. Lett. 96(2), 023102 (2010). [CrossRef]
  23. D. J. Sirbuly, S. E. Letant, and T. V. Ratto, “Hydrogen sensing with subwavelength optical waveguides via porous silsesquioxane-palladium nanocomposites,” Adv. Mater. (Deerfield Beach Fla.) 20(24), 4724–4727 (2008). [CrossRef]
  24. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008). [CrossRef] [PubMed]
  25. F. X. Gu, X. F. Yin, H. K. Yu, P. Wang, and L. M. Tong, “Polyaniline/polystyrene single-nanowire devices for highly selective optical detection of gas mixtures,” Opt. Express 17(13), 11230–11235 (2009). [CrossRef] [PubMed]
  26. F. X. Gu, H. K. Yu, P. Wang, Z. Y. Yang, and L. M. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010). [CrossRef] [PubMed]
  27. C. Ma and Z. L. Wang, “Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—a step towards nanomanufacturing,” Adv. Mater. (Deerfield Beach Fla.) 17(21), 2635–2639 (2005). [CrossRef]
  28. G. Z. Dai, Q. L. Zhang, Z. W. Peng, W. C. Zhou, M. X. Xia, Q. Wan, A. L. Pan, and B. S. Zou, “One-step synthesis of low-dimensional CdSe nanostructures and optical waveguide of CdSe nanowires,” J. Phys. D Appl. Phys. 41(13), 135301 (2008). [CrossRef]
  29. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  30. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004). [CrossRef] [PubMed]
  31. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16(8), 1992–1996 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited