OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10886–10894

Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials

Yang Yu, Zhenyu Yang, Shengxi Li, and Ming Zhao  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10886-10894 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1473 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have recently shown circular polarizers with the homo-structured double-helical metamaterials, which have broader operation bands than those of the single-helical structures [Opt. Lett. 35, 2588 (2010)]. However, trying to get more operation bands deteriorates the extinction ratio. In this paper, we proposed circular polarizers with hetero-structured double-helical metamaterials. The extinction ratios of these circular polarizers are two times higher than those with homo-structured double-helical metamaterials. Furthermore, we qualitatively explained the phenomenon of the higher extinction ratio from the viewpoint of the interaction between the two helix-wires in a double-helical unit.

© 2011 OSA

OCIS Codes
(260.5430) Physical optics : Polarization
(160.1585) Materials : Chiral media
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: April 1, 2011
Manuscript Accepted: May 12, 2011
Published: May 19, 2011

Yang Yu, Zhenyu Yang, Shengxi Li, and Ming Zhao, "Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials," Opt. Express 19, 10886-10894 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Q. Ye and S. L. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010). [CrossRef]
  2. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009). [CrossRef] [PubMed]
  3. Z. F. Li, H. Caglayan, E. Colak, J. F. Zhou, C. M. Soukoulis, and E. Ozbay, “Coupling effect between two adjacent chiral structure layers,” Opt. Express 18(6), 5375–5383 (2010). [CrossRef] [PubMed]
  4. J. F. Zhou, J. F. Dong, B. N. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79(12), 121104 (2009). [CrossRef]
  5. Z. F. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett. 97(8), 081901 (2010). [CrossRef]
  6. H. S. Oh, S. Liu, H. S. Jee, A. Baev, M. T. Swihart, and P. N. Prasad, “Chiral poly(fluorene-alt-benzothiadiazole) (PFBT) and nanocomposites with gold nanoparticles: plasmonically and structurally enhanced chirality,” J. Am. Chem. Soc. 132(49), 17346–17348 (2010). [CrossRef]
  7. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007). [CrossRef] [PubMed]
  8. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express 16(16), 11802–11807 (2008). [CrossRef] [PubMed]
  9. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  10. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010). [CrossRef] [PubMed]
  11. Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, “Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures,” Opt. Lett. 35(15), 2588–2590 (2010). [CrossRef] [PubMed]
  12. Z. Y. Yang, M. Zhao, and Y. F. Lu, “Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials,” J. Lightwave Technol. 28, 3415–3421 (2010).
  13. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]
  14. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]
  15. P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994). [CrossRef]
  16. J. D. Kraus and R. J. Marhefka, “The helical antenna: axial and other modes, Part II,” in Antennas: For All Applications, 3rd ed. (McGraw-Hill, 2003), pp. 251–258.
  17. Z. Yang, M. Zhao, and P. Lu, “Improving the signal-to-noise ratio for circular polarizers consisting of helical metamaterials,” Opt. Express 19(5), 4255–4260 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited