OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10907–10912

Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures

Xianji Piao, Sunkyu Yu, Sukmo Koo, Kwanghee Lee, and Namkyoo Park  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10907-10912 (2011)
http://dx.doi.org/10.1364/OE.19.010907


View Full Text Article

Enhanced HTML    Acrobat PDF (1157 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use coupled mode theory (CMT) to analyze a metal-insulator-metal (MIM) plasmonic stub structure, to reveal the existence of asymmetry in its transmittance spectra. Including the effect of the near field contribution for the stub structure, the observed asymmetry is interpreted as Fano-type interference between the quasi-continuum T-junction-resonator local-modes and discrete stub eigenmodes. Based on the asymmetry factor derived from the CMT analysis, methods to control transmittance asymmetry are also demonstrated.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(260.2110) Physical optics : Electromagnetic optics
(140.3325) Lasers and laser optics : Laser coupling

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 30, 2011
Revised Manuscript: May 6, 2011
Manuscript Accepted: May 13, 2011
Published: May 20, 2011

Citation
Xianji Piao, Sunkyu Yu, Sukmo Koo, Kwanghee Lee, and Namkyoo Park, "Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures," Opt. Express 19, 10907-10912 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10907


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. M. Pozar, Microwave Engineering (John Wiley & Sons, 2005).
  2. R. Stoffer, H. J. W. M. Hoekstra, R. M. De Ridder, E. Van Groesen, and F. P. H. Van Beckum, “Numerical studies of 2D photonic crystals: Waveguides, coupling between waveguides and filters,” Opt. Quantum Electron. 32(6/8), 947–961 (2000). [CrossRef]
  3. K. Ogusu and K. Takayama, “Transmission characteristics of photonic crystal waveguides with stubs and their application to optical filters,” Opt. Lett. 32(15), 2185–2187 (2007). [CrossRef] [PubMed]
  4. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008). [CrossRef] [PubMed]
  5. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  6. J. Tao, X. G. Huang, and J. H. Zhu, “A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators,” Opt. Express 18(11), 11111–11116 (2010). [CrossRef] [PubMed]
  7. L. Yang, C. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35(24), 4184–4186 (2010). [CrossRef] [PubMed]
  8. Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011). [CrossRef] [PubMed]
  9. X. Lin and X. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26(7), 1263–1268 (2009). [CrossRef]
  10. J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009). [CrossRef] [PubMed]
  11. J. Tao, X. Huang, X. Lin, J. Chen, Q. Zhang, and X. Jin, “Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters,” J. Opt. Soc. Am. B 27(2), 323–327 (2010). [CrossRef]
  12. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17(13), 10757–10766 (2009). [CrossRef] [PubMed]
  13. A. A. Reiserer, J. S. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18(11), 11810–11820 (2010). [CrossRef] [PubMed]
  14. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19(4), 2910–2915 (2011). [CrossRef] [PubMed]
  15. L. O. Diniz, F. D. Nunes, E. Marega, Jr., and B. H. V. Borges, “A novel subwavelength plasmon-polariton optical filter based on tilted coupled structures,” in Proc. META’ 10 2nd Int. Conf. Metamaterials, Photonic Crystals and Plasmonics, Cairo, Egypt, 106–110 (2010).
  16. L. O. Diniz, F. D. Nunes, E. Marega, J. Weiner, and B.-H. V. Borges, “Metal-Insulator-Metal surface plasmon polariton waveguide filters with cascaded transverse cavities,” J. Lightwave Technol. 29(5), 714–720 (2011). [CrossRef]
  17. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17(22), 20134–20139 (2009). [CrossRef] [PubMed]
  18. J. Wang, Y. Wang, X. Zhang, K. Yang, Y. Wang, S. Liu, and Y. Song, “A transmission line model for subwavelength metallic grating with single cut,” Optik (Stuttg.) . in press, doi:.
  19. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18(6), 6191–6204 (2010). [CrossRef] [PubMed]
  20. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961). [CrossRef]
  21. X. Yang, C. Husko, C. Wong, M. Yu, and D. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007). [CrossRef]
  22. F. Wang, X. Wang, H. Zhou, Q. Zhou, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer,” Opt. Express 17(9), 7708–7716 (2009). [CrossRef] [PubMed]
  23. Z. J. Zhong, Y. Xu, S. Lan, Q. F. Dai, and L. J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18(1), 79–86 (2010). [CrossRef] [PubMed]
  24. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010). [CrossRef]
  25. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23(23), 1855–1857 (1998). [CrossRef]
  26. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, and H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18(2), 162–165 (2001). [CrossRef]
  27. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited