OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10940–10949

Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires

Daoxin Dai and John E. Bowers  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10940-10949 (2011)
http://dx.doi.org/10.1364/OE.19.010940


View Full Text Article

Enhanced HTML    Acrobat PDF (1073 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel concept for an ultracompact polarization splitter-rotator is proposed by utilizing a structure combining an adiabatic taper and an asymmetrical directional coupler. The adiabatic taper structure is singlemode at the input end while it becomes multimode at the other end. When light propagates along the adiabatic taper structure, the TM fundamental mode launched at the narrow end is efficiently (close to 100%) converted to the first higher-order TE mode at the wide end because of the mode coupling between them. By using an asymmetrical directional coupler that has two adjacent waveguides with different core widths, the first higher-order TE mode is then coupled to the TE fundamental mode of the adjacent narrow waveguide. On the other hand, the input TE polarization does not change when it goes through the adiabatic taper structure. In the region of the asymmetrical directional coupler, the TE fundamental mode in the wide waveguide is not coupled to the adjacent narrow waveguide because of phase mismatch. In this way, TE- and TM- polarized light are separated while the TM fundamental mode is also converted into the TE fundamental mode. A design example of the proposed polarization splitter-rotator is given by using silicon-on-insulator nanowires and the total length of the device is less than 100μm. Furthermore, only a one-mask process is needed for the fabrication process, which is compatible with the standard fabrication for the regular photonic integrated circuits based on SOI nanowires.

© 2011 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Integrated Optics

History
Original Manuscript: March 31, 2011
Revised Manuscript: May 11, 2011
Manuscript Accepted: May 14, 2011
Published: May 20, 2011

Citation
Daoxin Dai and John E. Bowers, "Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires," Opt. Express 19, 10940-10949 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10940


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007). [CrossRef]
  2. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005). [CrossRef]
  3. D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of ultra-small overlapped AWG demultiplexer based on alpha-Si nanowire waveguides,” Electron. Lett. 42(7), 400–402 (2006). [CrossRef]
  4. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010). [CrossRef]
  5. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008). [CrossRef] [PubMed]
  6. Z. Sheng, D. Dai, and S. He, “Comparative study of losses in ultrasharp silicon-on-insulator nanowire bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009). [CrossRef]
  7. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006). [CrossRef]
  8. D. Dai and S. He, “Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires,” Opt. Lett. 31(13), 1988–1990 (2006). [CrossRef] [PubMed]
  9. D. Dai, Y. Shi, and S. He, “Theoretical Investigation for reducing polarization-sensitivity in Si-nanowire-based arrayed-waveguide grating (de)multiplexer with polarization-beam-splitters and reflectors,” IEEE J. Quantum Electron. 45(6), 654–660 (2009). [CrossRef]
  10. T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noé, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19(24), 1988–1990 (2007). [CrossRef]
  11. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007). [CrossRef] [PubMed]
  12. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006). [CrossRef] [PubMed]
  13. M. A. Komatsu, K. Saitoh, and M. Koshiba, “Design of miniaturized silicon wire and slot waveguide polarization splitterbased on a resonant tunneling,” Opt. Express 17(21), 19225–19233 (2009). [CrossRef]
  14. L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Green, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6(3), 402–405 (1994). [CrossRef]
  15. T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 17(2), 393–395 (2005). [CrossRef]
  16. W. W. Lui, T. Hirono, K. Yokoyama, and W.-P. Huang, “Polarization rotation in semiconductor bending waveguides: a coupled-mode theory formulation,” J. Lightwave Technol. 16(5), 929–936 (1998). [CrossRef]
  17. J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010). [CrossRef]
  18. N.-N. Feng, R. Sun, J. Michel, and L. C. Kimerling, “Low-loss compact-size slotted waveguide polarization rotator and transformer,” Opt. Lett. 32(15), 2131–2133 (2007). [CrossRef] [PubMed]
  19. Y. Yue, L. Zhang, M. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express 17(23), 20694–20699 (2009). [CrossRef] [PubMed]
  20. B. M. A. Rahman, S. S. A. Obayya, N. Somasiri, M. Rajarajan, K. T. V. Grattan, and H. A. El-Mikathi, “Design and characterization of compact single-section passive polarization rotator,” J. Lightwave Technol. 19(4), 512–519 (2001). [CrossRef]
  21. H. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol. 23(1), 432–445 (2005). [CrossRef]
  22. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008). [CrossRef]
  23. D. Vermeulen, S. Selvaraja, W. A. D. De Cort, N. A. Yebo, E. Hallynck, K. De Vos, P. P. P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Van Thourhout, and R. Baets, “Efficient tapering to the fundamental Quasi-TM mode in asymmetrical waveguides,” ECIO 2010 (2010).
  24. FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited