OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10950–10958

Photolithographically fabricated low-loss asymmetric silicon slot waveguides

Alexander Spott, Tom Baehr-Jones, Ran Ding, Yang Liu, Richard Bojko, Trevor O’Malley, Andrew Pomerene, Craig Hill, Wesley Reinhardt, and Michael Hochberg  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10950-10958 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1195 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate low-loss asymmetric slot waveguides in silicon-on-insulator (SOI). 130 and 180 nm wide slots were fabricated with a 248 nm stepper, in 200 nm thick silicon. An asymmetric waveguide design is shown to expand the range in which the TE0 mode is guided and suppress the TE1 mode, while still maintaining a sharp concentration of electric field in the center of the slot. Optical propagation losses of 2 dB/cm or less are shown for asymmetric slot waveguides with 130 nm wide slots and 320 and 100 nm wide arms.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: April 13, 2011
Revised Manuscript: May 12, 2011
Manuscript Accepted: May 17, 2011
Published: May 20, 2011

Alexander Spott, Tom Baehr-Jones, Ran Ding, Yang Liu, Richard Bojko, Trevor O’Malley, Andrew Pomerene, Craig Hill, Wesley Reinhardt, and Michael Hochberg, "Photolithographically fabricated low-loss asymmetric silicon slot waveguides," Opt. Express 19, 10950-10958 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  2. C. A. Barrios, M. J. Bañuls, V. González-Pedro, K. B. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33(7), 708–710 (2008). [CrossRef] [PubMed]
  3. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007). [CrossRef] [PubMed]
  4. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008). [CrossRef] [PubMed]
  5. C. F. Carlborg, K. B. Gylfason, A. Kaźmierczak, F. Dortu, M. J. Bañuls Polo, A. Maquieira Catala, G. M. Kresbach, H. Sohlström, T. Moh, L. Vivien, J. Popplewell, G. Ronan, C. A. Barrios, G. Stemme, and W. van der Wijngaart, “A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips,” Lab Chip 10(3), 281–290 (2010). [CrossRef] [PubMed]
  6. V. M. N. Passaro, F. Dell’Olio, C. Ciminelli, and M. N. Armenise, “Efficient chemical sensing by coupled slot SOI saveguides,” Sensors 9(2), 1012–1032 (2009). [CrossRef]
  7. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92(16), 163303 (2008). [CrossRef]
  8. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009). [CrossRef]
  9. J. Wülbern, J. Hampe, A. Petrov, M. Eich, J. Luo, A. K.-Y. Jen, A. Di Falco, T. F. Krauss, and J. Bruns, “Electro-optic modulation in slotted resonant photonic crystal heterostructures,” Appl. Phys. Lett. 94(24), 241107 (2009). [CrossRef]
  10. P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express 14(20), 9197–9202 (2006). [CrossRef] [PubMed]
  11. A. Tervonen, A. Khanna, A. Säynätjoki, and S. Honkanen, “Modeling study of nonreciprocal phase shift in magnetooptic asymmetric slot waveguides,” J. Lightwave Technol. 29(5), 656–660 (2011). [CrossRef]
  12. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005). [CrossRef]
  13. G. Wang, T. Baehr-Jones, M. Hochberg, and A. Scherer, “Design and fabrication of segmented, slotted waveguides for electro-optic modulation,” Appl. Phys. Lett. 91, 143106 (2007).
  14. R. Ding, T. Baehr-Jones, W.-J. Kim, X. Xiong, R. Bojko, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in silicon-on-insulator,” Opt. Express 18(24), 25061–25067 (2010). [CrossRef] [PubMed]
  15. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008). [CrossRef]
  16. P. Dong, W. Qian, S. Liao, H. Liang, C.-C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18(14), 14474–14479 (2010). [CrossRef] [PubMed]
  17. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009). [CrossRef] [PubMed]
  18. C. Xiong, W. H. P. Pernice, M. Li, and H. X. Tang, “High performance nanophotonic circuits based on partially buried horizontal slot waveguides,” Opt. Express 18(20), 20690–20698 (2010). [CrossRef] [PubMed]
  19. FemSIM software, RSOFT Design Inc., “RSOFT,” (RSOFT, 2011). http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=FemSIM .
  20. T. Baehr-Jones and M. Hochberg, “Polymer silicon hybrid systems: a platform for practical nonlinear optics,” J. Phys. Chem. C 112(21), 8085–8090 (2008). [CrossRef]
  21. J. Luo, X.-H. Zhou, and A. K.-Y. Jen, “Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials,” J. Mater. Chem. 19(40), 7410–7424 (2009). [CrossRef]
  22. PMMA Resists – Microchem, “MicroChem NANOTM PMMA and Copolymer datasheet,” (MicroChem, 2001). http://www.microchem.com/products/pdf/PMMA_Data_Sheet.pdf .
  23. A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62(5), 446–448 (1993). [CrossRef]
  24. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing 2nd edition, (Cambridge University Press, 1992), Chap. 15.
  25. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77(11), 1617–1619 (2000). [CrossRef]
  26. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005). [CrossRef]
  27. C. Ciminelli, V. M. N. Passaro, F. Dell’Olio, and M. N. Armenise, “Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides,” J. Eur. Opt. Soc. Rapid Publ. 4, 09015 (2009). [CrossRef]
  28. T. Baehr-Jones, M. Hochberg, C. Walker, E. Chan, D. Koshinz, W. Krug, and A. Scherer, “Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators,” J. Lightwave Technol. 23(12), 4215–4221 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited