OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10959–10966

Analysis of low F-number dual micro-axilens array with binary structures by rigorous electromagnetic theory

Di Feng, Li-Shuang Feng, and Chun-Xi Zhang  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10959-10966 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1130 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate a two-dimensional low F-number dual micro-axilens array with binary structures based on a rigorous electromagnetic theory. The focal characteristics of a binary dual micro-axilens array (BDMA), including axial performances (focal depth and focal shift) and transverse performances (focal spot size and diffraction efficiency), have been analyzed in detail for different F-numbers, different incident polarization (TE and TM) waves, and different distances between micro-axilens. Numerical results reveal that the interference effect of a BDMA is not very evident, which is useful for building a BDMA with a high fill factor, and the focal characteristics of a BDMA are sensitive to the polarization of an incident wave. The comparative results have also shown that the diffraction efficiency of a BDMA will increase and the focal spot size of a BDMS will decrease when the F-number increases, for both TE polarization and TM polarization, respectively. It is expected that this investigation will provide useful insight into the design of micro-optical elements with high integration.

© 2011 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(220.2560) Optical design and fabrication : Propagating methods

ToC Category:
Diffraction and Gratings

Original Manuscript: February 17, 2011
Revised Manuscript: April 14, 2011
Manuscript Accepted: April 25, 2011
Published: May 20, 2011

Di Feng, Li-Shuang Feng, and Chun-Xi Zhang, "Analysis of low F-number dual micro-axilens array with binary structures by rigorous electromagnetic theory," Opt. Express 19, 10959-10966 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt. 49(11), 1997–2005 (2010). [CrossRef] [PubMed]
  2. R. Stevens and T. Miyashita, “Review of standards for microlenses and microlens arrays,” Imaging Sci. J. 58(4), 202–212 (2010). [CrossRef]
  3. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16(7), 523–525 (1991). [CrossRef] [PubMed]
  4. J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17(1), 7–9 (1992). [CrossRef] [PubMed]
  5. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992). [CrossRef] [PubMed]
  6. B. Z. Dong, J. Liu, B. Y. Gu, G. Z. Yang, and J. Wang, “Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution,” J. Opt. Soc. Am. A 18(7), 1465–1470 (2001). [CrossRef]
  7. J. S. Ye, B. Z. Dong, B. Y. Gu, G. Z. Yang, and S. T. Liu, “Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on rigorous electromagnetic theory,” J. Opt. Soc. Am. A 19(10), 2030–2035 (2002). [CrossRef]
  8. G. Druart, J. Taboury, N. Guérineau, R. Haïdar, H. Sauer, A. Kattnig, and J. Primot, “Demonstration of image-zooming capability for diffractive axicons,” Opt. Lett. 33(4), 366–368 (2008). [CrossRef] [PubMed]
  9. J. N. Mait, D. W. Prather, and M. S. Mirotznik, “Design of binary subwavelength diffractive lenses by use of zeroth-order effective-medium theory,” J. Opt. Soc. Am. A 16(5), 1157–1167 (1999). [CrossRef]
  10. D. Feng, P. Ou, L. S. Feng, S. L. Hu, and C. X. Zhang, “Binary sub-wavelength diffractive lenses with long focal depth and high transverse resolution,” Opt. Express 16(25), 20968–20973 (2008). [CrossRef] [PubMed]
  11. D. W. Prather, J. N. Mait, M. S. Mirotznik, and J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15(6), 1599–1607 (1998). [CrossRef]
  12. D. Feng, Y. B. Yan, G. F. Jin, and S. S. Fan, “Beam focusing characteristics of diffractive lenses with binary subwavelength structures,” Opt. Commun. 239(4-6), 345–352 (2004). [CrossRef]
  13. A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array,” Opt. Express 17(22), 19908–19918 (2009). [CrossRef] [PubMed]
  14. D. Wu, S. Z. Wu, L. G. Niu, Q. D. Chen, R. Wang, J. F. Song, H. H. Fang, and H. B. Sun, “High numerical aperture microlens arrays of close packing,” Appl. Phys. Lett. 97(3), 031109 (2010). [CrossRef]
  15. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  16. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 1995).
  17. M. W. Farn, “Binary gratings with increased efficiency,” Appl. Opt. 31(22), 4453–4458 (1992). [CrossRef] [PubMed]
  18. M. S. Lee, P. Lalanne, J. C. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A, Pure Appl. Opt. 4(5), S119–S124 (2002). [CrossRef]
  19. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143–1156 (1999). [CrossRef]
  20. P. Lalanne, “Waveguiding in blazed-binary diffractive elements,” J. Opt. Soc. Am. A 16(10), 2517–2520 (1999). [CrossRef]
  21. O. Sandfuchs, R. Brunner, D. Pätz, S. Sinzinger, and J. Ruoff, “Rigorous analysis of shadowing effects in blazed transmission gratings,” Opt. Lett. 31(24), 3638–3640 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited