OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10979–10985

High index contrast semiconductor ARROW and hybrid ARROW fibers

N. Healy, J. R. Sparks, R. R. He, P. J. A. Sazio, J. V. Badding, and A. C. Peacock  »View Author Affiliations


Optics Express, Vol. 19, Issue 11, pp. 10979-10985 (2011)
http://dx.doi.org/10.1364/OE.19.010979


View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the guidance properties of two photonic crystal fibers that have been fabricated by filling the holes of a silica template with hydrogenated amorphous silicon inclusions. The first is an all-solid fiber that guides light via an antiresonant reflecting optical waveguiding mechanism and the second is only partially filled so that it guides light by a hybrid of modified total internal reflection and antiresonant reflecting optical waveguiding. It will be shown that, by selectively filling the silica template to leave an unfilled internal ring of holes, the fiber’s confinement loss can be reduced significantly. This novel fiber design in which the light guided in the silica core can be modified by the semiconductor cladding provides a route to integrating functional semiconductor fibers with existing silica fiber infrastructures.

© 2011 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 16, 2011
Manuscript Accepted: March 21, 2011
Published: May 20, 2011

Citation
N. Healy, J. R. Sparks, R. R. He, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, "High index contrast semiconductor ARROW and hybrid ARROW fibers," Opt. Express 19, 10979-10985 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-11-10979


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-19-1547 . [CrossRef] [PubMed]
  2. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009). [CrossRef]
  3. W. Wadsworth, R. Percival, G. Bouwmans, J. Knight, and P. Russell, “High power air-clad photonic crystal fibre laser,” Opt. Express 11(1), 48–53 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-1-48 . [CrossRef] [PubMed]
  4. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-17-1974 . [CrossRef] [PubMed]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999). [CrossRef] [PubMed]
  6. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-18-1592 . [CrossRef]
  7. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243 . [CrossRef] [PubMed]
  8. A. Fuerbach, P. Steinvurzel, J. Bolger, and B. Eggleton, “Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt. Express 13(8), 2977–2987 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-8-2977 . [CrossRef] [PubMed]
  9. A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9238 . [CrossRef] [PubMed]
  10. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2589 . [CrossRef] [PubMed]
  11. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12(24), 5857–5871 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-24-5857 . [CrossRef] [PubMed]
  12. A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17(12), 10082–10090 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-12-10082 . [CrossRef] [PubMed]
  13. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96(4), 041105 (2010). [CrossRef]
  14. P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18(16), 16826–16831 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-16-16826 . [CrossRef] [PubMed]
  15. D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Appl. Phys. Lett. 91(16), 161112 (2007). [CrossRef]
  16. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–601 (1980). [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  18. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, “An improved photonic bandgap fiber based on an array of rings,” Opt. Express 14(13), 6291–6296 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6291 . [CrossRef] [PubMed]
  19. R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Active optical fibres with integrated semiconductor junctions,” in preparation.
  20. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009),
 http://www.opticsinfobase.org/abstract.cfm?URI=JLT-27-11-1617 . [CrossRef]
  21. C.-P. Yu and J. H. Liou, “Selectively liquid-filled photonic crystal fibers for optical devices,” Opt. Express 17(11), 8729–8734 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-11-8729 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited