OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 11 — May. 23, 2011
  • pp: 10997–11006

Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy

X.N. He, W. Hu, C.M. Li, L.B. Guo, and Y.F. Lu  »View Author Affiliations

Optics Express, Vol. 19, Issue 11, pp. 10997-11006 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1545 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Improved spectral resolutions were achieved in laser-induced breakdown spectroscopy (LIBS) through generation of high-temperature and low-density plasmas. A first pulse from a KrF excimer laser was used to produce particles by perpendicularly irradiating targets in air. A second pulse from a 532 nm Nd:YAG laser was introduced parallel to the sample surface to reablate the particles. Optical scattering from the first-pulse plasmas was imaged to elucidate particle formation in the plasmas. Narrower line widths (full width at half maximums: FWHMs) and weaker self-absorption were observed from time-integrated LIBS spectra. Estimation of plasma temperatures and densities indicates that high temperature and low density can be achieved simultaneously in plasmas to improve LIBS resolutions.

© 2011 OSA

OCIS Codes
(020.6580) Atomic and molecular physics : Stark effect
(350.5400) Other areas of optics : Plasmas
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:

Original Manuscript: April 21, 2011
Revised Manuscript: May 3, 2011
Manuscript Accepted: May 11, 2011
Published: May 20, 2011

X.N. He, W. Hu, C.M. Li, L.B. Guo, and Y.F. Lu, "Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy," Opt. Express 19, 10997-11006 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33(1), 30–48 (2000). [CrossRef]
  2. D. Anglos, S. Couris, and C. Fotakis, “Laser diagnostics of painted artworks: laser induced breakdown spectroscopy of pigments,” Appl. Spectrosc. 51(7), 1025–1030 (1997). [CrossRef]
  3. D. A. Cremers, J. E. Barefield, and A. C. Koskelo, “Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber-optic cable,” Appl. Spectrosc. 49(6), 857–860 (1995). [CrossRef]
  4. J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” Rec. Res. Dev. Appl. Spectrosc. 2, 59–67 (1999).
  5. S. Nakamura, Y. Ito, K. Sone, H. Hiraga, and K.- Kaneko, “Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses,” Anal. Chem. 68(17), 2981–2986 (1996). [CrossRef] [PubMed]
  6. D. A. Cremers, L. J. Radziemski, and R. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38(5), 721–729 (1984). [CrossRef]
  7. R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D Appl. Phys. 28(10), 2181–2187 (1995). [CrossRef]
  8. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45(9), 1419–1423 (1991). [CrossRef]
  9. F. Colao, S. Pershin, V. Lazic, and R. Fantoni, “Investigation of the mechanisms involved in formation and decay of laser-produced plasmas,” Appl. Surf. Sci. 197-198, 207–212 (2002). [CrossRef]
  10. L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002). [CrossRef]
  11. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002). [CrossRef]
  12. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54(9), 1275–1278 (2000). [CrossRef]
  13. D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a preablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54(9), 1270–1274 (2000). [CrossRef]
  14. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresenius J. Anal. Chem. 369(3-4), 320–327 (2001). [CrossRef] [PubMed]
  15. L. J. Radziemski, and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker: New York 1989).
  16. R. E. Russo, X. Mao, and S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74(3), 70A–77A (2002). [CrossRef] [PubMed]
  17. W. B. Lee, J. Y. Wu, Y. I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39(1), 27–97 (2004). [CrossRef]
  18. K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37(1), 89–117 (2002). [CrossRef]
  19. I. B. Gornushkin, L. A. King, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Line broadening mechanisms in the low pressure laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 54(8), 1207–1217 (1999). [CrossRef]
  20. A. Essoltani, P. Proulx, M. I. Boulos, and A. Gleizes, “Radiation and self-absorption in argon-iron plasmas at atmospheric pressure,” J. Anal. At. Spectrom. 5(6), 543–547 (1990). [CrossRef]
  21. J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24–32 (2006). [CrossRef] [PubMed]
  22. H. Sobral, M. Villagrán-Muniz, R. Navarro-González, and A. C. Raga, “Temporal evolution of the shock wave and hot core air in laser induced plasma,” Appl. Phys. Lett. 77(20), 3158 (2000). [CrossRef]
  23. J. Sneddon, T. L. Thiem, and Y. I. Lee, Lasers in Analytical Atomic Spectroscopy (VCH, New York, 1997).
  24. Y. Ralchenko, A. E. Kramida, J. Reader, NIST ASD Team, (2010). NIST Atomic Spectra Database (version 4.0), [Online]. Available: http://physics.nist.gov/asd [Monday, 04-Apr-2011 23:19:27 EDT]. National Institute of Standards and Technology, Gaithersburg, MD.
  25. W. M. Andrzej, P. Vincenzo, and S. Israel, Laser-induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University Press, 2006)
  26. H. R. Griem, Spectral Line Broadening by Plasma (Academic Press, 1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited