OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11018–11033

Reconfigurable quantum metamaterials

James Q. Quach, Chun-Hsu Su, Andrew M. Martin, Andrew D. Greentree, and Lloyd C. L. Hollenberg  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11018-11033 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2865 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By coupling controllable quantum systems into larger structures we introduce the concept of a quantum metamaterial. Conventional meta-materials represent one of the most important frontiers in optical design, with applications in diverse fields ranging from medicine to aerospace. Up until now however, metamaterials have themselves been classical structures and interact only with the classical properties of light. Here we describe a class of dynamic metamaterials, based on the quantum properties of coupled atom-cavity arrays, which are intrinsically lossless, reconfigurable, and operate fundamentally at the quantum level. We show how this new class of metamaterial could be used to create a reconfigurable quantum superlens possessing a negative index gradient for single photon imaging. With the inherent features of quantum superposition and entanglement of metamaterial properties, this new class of dynamic quantum metamaterial, opens a new vista for quantum science and technology.

© 2011 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(080.0080) Geometric optics : Geometric optics
(190.0190) Nonlinear optics : Nonlinear optics
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:

Original Manuscript: February 3, 2011
Revised Manuscript: May 4, 2011
Manuscript Accepted: May 10, 2011
Published: May 23, 2011

James Q. Quach, Chun-Hsu Su, Andrew M. Martin, Andrew D. Greentree, and Lloyd C. L. Hollenberg, "Reconfigurable quantum metamaterials," Opt. Express 19, 11018-11033 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). [CrossRef]
  2. M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849–851 (2001). [CrossRef] [PubMed]
  3. M. C. K. Wiltshire, J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, “Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires,” Opt. Express 11, 709–715 (2003). [CrossRef] [PubMed]
  4. M. C. Wiltshire, J. B. Pendry, D. J. Larkman, D. J. Gilderdale, D. Herlihy, I. R. Young, and J. V. Hajnal, “Geometry preserving flux ducting by magnetic metamaterials,” Proc. Int. Soc. Mag. Reson. Med. 11, 713–713 (2003).
  5. T. J. Yen, W. J. Padilla, N. Fang1, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basovm, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004). [CrossRef] [PubMed]
  6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Uspekhi-USSR 10, 509–514 (1968). [CrossRef]
  7. T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Anomalous refraction, diffraction, and imaging in metamaterials,” Phys. Rev. B 79, 115430 (2009). [CrossRef]
  8. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef] [PubMed]
  9. R. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  10. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90, 137401 (2003). [CrossRef] [PubMed]
  11. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  12. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  13. Z. L. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” Science 289, 1734–1736 (2000). [CrossRef] [PubMed]
  14. S. Guenneau, A. Movchan, G. Ptursson, and S. A. Ramakrishna, “Acoustic metamaterials for sound focusing and confinement,” New J. Phys. 9, 399 (2007). [CrossRef]
  15. M. Brun, S. Guenneau, and A. B. Movchan, “Achieving control of in-plane elastic waves,” Appl. Phys. Lett. 94, 061903 (2009). [CrossRef]
  16. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Strong interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2, 849–855 (2006). [CrossRef]
  17. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861 (2006). [CrossRef]
  18. D. G. Angelakis, M. F. Santos, and S. Bose, “Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays,” Phys. Rev. A 76, 031805(R) (2007). [CrossRef]
  19. L. Zhou, H. Dong, C. P. Sun, and F. Nori, “Quantum supercavity and atomic mirrors,” Phys. Rev. A 78, 063827 (2008). [CrossRef]
  20. M. I. Makin, C. Cole, C. D. Tahan, L. C. L. Hollenberg, and A. D. Greentree, “Quantum phase transitions in photonic cavities with two-level systems,” Phys. Rev. A 80, 043842 (2009). [CrossRef]
  21. S. Schmidt and G. Blatter, “Strong coupling theory for the Jaynes-Cummings-Hubbard model,” Phys. Rev. Lett. 103, 086403 (2009). [CrossRef] [PubMed]
  22. P. Pippan, H. G. Evertz, and M. Hohenadler, “Excitation spectra of strongly correlated lattice bosons and polaritons,” Phys. Rev. A 80, 033612 (2009). [CrossRef]
  23. J. Quach, M. I. Makin, C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Band structure, phase transitions and semiconductor analogs in one-dimensional solid light systems,” Phys. Rev. A 80, 063838 (2009). [CrossRef]
  24. G. Rempe, H. Walther, and N. Klein, “Observation of quantum collapse and revival in a one-atom maser,” Phys. Rev. Lett. 58, 353–356 (1987). [CrossRef] [PubMed]
  25. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, “Quantum Rabi oscillation: a direct test of field quantization in a cavity,” Phys. Rev Lett. 76, 1800–1803 (1996). [CrossRef] [PubMed]
  26. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005). [CrossRef] [PubMed]
  27. M. Mucke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boasz, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465, 755–758 (2010). [CrossRef] [PubMed]
  28. A. Hayward and A. D. Greentree, “Quantum and classical chaos in kicked coupled Jaynes-Cummings cavities,” Phys. Rev. A 81, 063831 (2010). [CrossRef]
  29. C.-H. Su, A. D. Greentree, W. J. Munro, K. Nemoto, and L. C. L. Hollenberg, “Pulse shaping by coupled cavities: single photons and qudits,” Phys. Rev. A 80, 033811 (2009). [CrossRef]
  30. L. Zhou, Z. R. Gong, Y.-X. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008). [CrossRef] [PubMed]
  31. A. Tomadin and R. Fazio, “Many-body phenomena in QED-cavity arrays,” J. Opt. Soc. Am. B 27, A130–A136 (2010). [CrossRef]
  32. A. L. Rakhmanov, A. M. Zagoskin, S. Savelev, and F. Nori, “Quantum metamaterials: electromagnetic waves in a Josephson qubit line,” Phys. Rev. B. 77, 144507 (2008). [CrossRef]
  33. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  34. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nature Mater. 7, 435–441 (2008). [CrossRef]
  35. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104(R) (2002). [CrossRef]
  36. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115 (2003). [CrossRef]
  37. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Negative refraction without negative index in metallic photonic crystals,” Opt. Express 11, 746–754 (2003). [CrossRef] [PubMed]
  38. A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left-handed transmission-line lens,” Phys. Rev. Lett. 92, 117403 (2004). [CrossRef] [PubMed]
  39. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens,” Phys. Rev. Lett. 91, 207401 (2003). [CrossRef] [PubMed]
  40. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves: negative refraction by photonic crystals,” Nature 423, 604–605 (2003). [CrossRef] [PubMed]
  41. Z. Liu, N. Fang, T.-J. Yen, and X. Zhang, “Rapid growth of evanescent wave with a silver superlens,” Appl. Phys. Lett. 83, 5184–5186 (2003). [CrossRef]
  42. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595–1595 (2006). [CrossRef] [PubMed]
  43. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008). [CrossRef]
  44. M. Devoret, S. Girvin, and R. Schoelkopf, “Circuit-QED: how strong can the coupling between a Josephson junction atom and a transmission line resonator be?,” Ann. Phys. (Leipzig) 16, 767–779 (2007). [CrossRef]
  45. V. Lefevre-Seguin and S. Haroche, “Towards cavity-QED experiments with silica microspheres,” Mat. Sci. Eng. B 48, 53–58 (1997). [CrossRef]
  46. C. J. Hood, H. J. Kimble, and J. Ye, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity,” Phys. Rev. A 64, 033804 (2001). [CrossRef]
  47. M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom-photon junctions,” Nat. Photonics 5, 35–38 (2011). [CrossRef]
  48. C. Reese, B. Gayral, B. D. Gerardot, A. Imamoglu, P. M. Petroff, and E. Hu, “High-Q photonic crystal microcavities fabricated in a thin GaAs membrane,” J. Vac. Sci. Technol. B 19, 2749–2752 (2001). [CrossRef]
  49. R. Sun, P. Dong, N.-N. Feng, C.-Y. Hong, J. Michel1, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15, 17967–17972 (2007). [CrossRef] [PubMed]
  50. M. Barth, N. Nüsse, B. Löchel, and O. Benson, “Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity,” Opt. Lett. 34, 1108–1110 (2009). [CrossRef] [PubMed]
  51. P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17, 8081–8097 (2009). [CrossRef] [PubMed]
  52. Ph. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006). [CrossRef] [PubMed]
  53. S. A. Empedocles and M. G. Bawendi, “Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots,” Science 278, 2114–2117 (1997). [CrossRef]
  54. Ch. Brunel, Ph. Tamarat, B. Lounis, J. C. Woehl, and M. Orrit, “Stark effect on single molecules of Dibenzan-thanthrene in a Naphthalene crystal and in a n-Hexadecane Shpol’skii matrix,” J. Phys. Chem. A 103, 2429–2434 (1999). [CrossRef]
  55. A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, “Photon echoes produced by switching electric fields,” Phys. Rev. Lett. 96, 043602 (1006). [PubMed]
  56. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef] [PubMed]
  57. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultrahigh-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef] [PubMed]
  58. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005). [CrossRef]
  59. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007). [CrossRef]
  60. M. P. Hiscocks, C.-H. Su, B. C. Gibson, A. D. Greentree, L. C. L. Hollenberg, and F. Ladouceur, “Slot-waveguide cavities for optical quantum information applications,” Opt. Express 17, 7295–7303 (2009). [CrossRef] [PubMed]
  61. C.-H. Su, M. P. Hiscocks, B. C. Gibson, A. D. Greentree, L. C. L. Hollenberg, and F. Ladouceur, “Coupling slot-waveguide cavities for large-scale quantum optical devices,” Opt. Express 19, 6362–6373 (2011). [CrossRef]
  62. A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Yu. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Electromagnetically induced transparency on a single artificial atom,” Phys. Rev. Lett. 104, 193601 (2010).
  63. O. V. Astafiev, A. A. Abdumalikov, A. M. Zagoskin, Yu. A. Pashkin, Y. Nakamura, and J. S. Tsai, “Ultimate on-chip quantum amplifier,” Phys. Rev. Lett. 104, 183603 (2010).
  64. O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Yu. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef] [PubMed]
  65. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent population trapping of an electron spin in a single negatively charged quantum dot,” Nat. Phys. 4, 692–695 (2008). [CrossRef]
  66. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent population trapping of single spins in diamond under optical excitation,” Phys. Rev. Lett. 97, 247401 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1299 KB)     
» Media 2: MOV (379 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited