OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11052–11058

Application of linear Raman spectroscopy for the determination of acetone decomposition

Simone Christine Eichmann, Johannes Trost, Thomas Seeger, Lars Zigan, and Alfred Leipertz  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11052-11058 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (947 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Acetone (CH3)2CO is a common tracer for laser-induced fluorescence (LIF) to investigate mixture formation processes and temperature fields in combustion applications. Since the fluorescence signal is a function of temperature and pressure, calibration measurements in high pressure and high temperature cells are necessary. However, there is a lack of reliable data of tracer stability at these harsh conditions for technical application. A new method based on the effect of spontaneous Raman scattering is proposed to analyze the thermal stability of the tracer directly in the LIF calibration cell. This is done by analyzing the gas composition regarding educts and products of the reaction. First measurements at IC engine relevant conditions up to 750 K and 30 bar are presented.

© 2011 OSA

OCIS Codes
(300.0300) Spectroscopy : Spectroscopy
(300.6330) Spectroscopy : Spectroscopy, inelastic scattering including Raman

ToC Category:

Original Manuscript: March 7, 2011
Revised Manuscript: April 19, 2011
Manuscript Accepted: April 20, 2011
Published: May 23, 2011

Simone Christine Eichmann, Johannes Trost, Thomas Seeger, Lars Zigan, and Alfred Leipertz, "Application of linear Raman spectroscopy for the determination of acetone decomposition," Opt. Express 19, 11052-11058 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Devillers, G. Bruneaux, and C. Schulz, “Investigation of toluene LIF at high pressure and high temperature in an optical engine,” Appl. Phys. B 96(4), 735–739 (2009). [CrossRef]
  2. M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22(4), 251–253 (1997). [CrossRef] [PubMed]
  3. S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71(5), 717–723 (2000). [CrossRef]
  4. T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “2-D Temperature Measurements of Unburned Gas Mixture in an Engine by Two-line Excitation LIF Technique,” in SAE Technical Paper Series 2006–01–3336 (2006).
  5. M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91(3-4), 669–675 (2008). [CrossRef]
  6. D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32(2), 2869–2876 (2009). [CrossRef]
  7. M. Löffler, K. Kröckel, P. Koch, F. Beyrau, and A. Leipertz, “Simultaneous Quantitative Measurements of Temperature and Residual Gas Fields inside a Fired SI-Engine Using Acetone laser-induced fluorescence,” SAE Technical Paper Series 2009–01–0656 (2009).
  8. B. H. Cheung and R. K. Hanson, “cw laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B 98(2-3), 581–591 (2010). [CrossRef]
  9. M. Löffler, B. U. Melcher, A. Braeuer, F. Beyrau, and A. Leipertz, “Behavior of the Acetone Laser-Induced Fluorescence under Engine Relevant Conditions for the Simultaneous Visualization of Temperature and Concentration Fields,” SAE Technical Paper Series 2007–01–0642 (2007).
  10. W. Berthold, and U. Löffler, Lexikon sicherheitstechnsicher Begriffe der Chemie (Verlag Chemie, Weinheim, 1981).
  11. H. Steen, Handbook of Explosion Prevention and Protection (Wiley-VHC, Weinheim, 2004).
  12. C. N. Hinshelwood and W. K. Hutchison, “A Homogeneous Unimolecular Reactions-The Thermal Decomposition of Acetone in the Gaseous State,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 111(757), 245–257 (1926). [CrossRef]
  13. J. A. Barnard and T. W. Honeyman, “The Gaseous Oxidation of Acetone. I. The High-Temperature Reaction,” Proc. R. Soc. Lond. A Math. Phys. Sci. 279(1377), 236–247 (1964). [CrossRef]
  14. B. C. Capelin, G. Ingram, and J. Kokolis, “The pyrolytic identification of organic moleculesII. A quantitative evaluation,” Microchem. J. 19(3), 229–252 (1974). [CrossRef]
  15. K. Sato and Y. Hidaka, “Shock-Tube and Modeling Study of Acetone Pyrolysis and Oxidation,” Combust. Flame 122(3), 291–311 (2000). [CrossRef]
  16. J. Ernst, K. Spindler, and H. Wagner, “Untersuchungen zum thermischern Zerfall von Acetaldehyd und Aceton,” Ber. Bunsenges. Phys. Chem 80, 645–650 (1976).
  17. F. O. Rice and R. E. Vollrath, “The thermal decomposition of acetone in the gaseous state,” Proc. Natl. Acad. Sci. U.S.A. 15(9), 702–705 (1929). [CrossRef] [PubMed]
  18. D. E. Hoare and T. M. Li, “The Combustion of Simple Ketones I - Mechanism at 'Low' Temperatures,” Combust. Flame 12(2), 136–144 (1968). [CrossRef]
  19. J. Egermann, T. Seeger, and A. Leipertz, “Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by raman scattering,” Appl. Opt. 43(29), 5564–5574 (2004). [CrossRef] [PubMed]
  20. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, Amsterdam, Netherlands, 1996).
  21. D. A. Long, Raman Spectroscopy (McGraw-Hill Inc., New York, 1977).
  22. W. Hirsch, and E. Brandes, Report: “Zündtemperaturen binärer Gemische bei erhöhten Ausgangsdrücken,” (Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, available at: http://www.ptb.de/de/org/3/34/341/tzp.pdf , 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited