OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11120–11127

High efficiency nano-focusing kinoform optics for synchrotron radiation

L. Alianelli, K. J. S. Sawhney, R. Barrett, I. Pape, A. Malik, and M. C. Wilson  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11120-11127 (2011)
http://dx.doi.org/10.1364/OE.19.011120


View Full Text Article

Acrobat PDF (994 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Modern synchrotron sources have provided for decades intense beams of photons over a large energy spectrum. The availability of improved optics and detectors has opened up new opportunities for the study of matter at the micrometre and nanometre scale in many disciplines. Whilst exploitation of micro-focused beams occurs almost daily in many beamlines, the production of beams of 100 nm is achieved on few instruments which use specialised optics. Refractive lenses, zone plates, curved mirrors, multilayers, and multilayer Laue lenses, can all focus x-rays to less than 50 nm under strict beam stability conditions. Focusing the synchrotron radiation to beam sizes smaller than 10 nm is considered the ultimate goal for the current decade. Silicon micro-technology has so far provided some of the most advanced x-ray refractive lenses; we report on design and characterisation of a novel silicon kinoform lens that is capable of delivering nano-beams with high efficiency.

© 2011 OSA

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(340.0340) X-ray optics : X-ray optics

ToC Category:
X-ray Optics

History
Original Manuscript: April 18, 2011
Manuscript Accepted: May 6, 2011
Published: May 23, 2011

Citation
L. Alianelli, K. J. S. Sawhney, R. Barrett, I. Pape, A. Malik, and M. C. Wilson, "High efficiency nano-focusing kinoform optics for synchrotron radiation," Opt. Express 19, 11120-11127 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11120


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. R. Sandy, S. Narayanan, M. Sprung, J.-D. Su, K. Evans-Lutterodt, A. F. Isakovic, and A. Stein, “Kinoform optics applied to X-ray photon correlation spectroscopy,” J. Synchrotron Radiat. 17(3), 314–320 (2010). [CrossRef] [PubMed]
  2. M. K. Tiwari, L. Alianelli, I. P. Dolbnya, and K. J. S. Sawhney, “Application of kinoform lens for X-ray reflectivity analysis,” J. Synchrotron Radiat. 17(2), 237–242 (2010). [CrossRef] [PubMed]
  3. K. Evans-Lutterodt, J. Ablett, A. Stein, C. C. Kao, D. Tennant, F. Klemens, A. Taylor, C. Jacobsen, P. Gammel, H. Huggins, G. Bogart, S. Ustin, and L. Ocola, “Single-element elliptical hard x-ray micro-optics,” Opt. Express 11(8), 919–926 (2003). [CrossRef] [PubMed]
  4. K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, and D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99(13), 134801 (2007). [CrossRef] [PubMed]
  5. E. Hecht, Optics. 2nd ed. 1987, Reading, MA: Addison-Wesley.
  6. M. Sánchez del Río, European Synchrotron Radiation Facility, Grenoble, France (personal communication 2010).
  7. C. Welnak, G. J. Chen, and F. Cerrina, “SHADOW: a synchrotron radiation and x-rayoptics simulation tool,” Nucl. Instrum. Methods A347, 344–347 (1994).
  8. L. Alianelli, K.J.S. Sawhney, D.W.K. Jenkins, I.M. Loader, R. Stevens, A. Snigirev and I. Snigireva, Development of Refractive X-ray Focusing Optics at Diamond Light Source” SPIE Proceedings 670507 (2007).
  9. L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Germanium and silicon kinoform focusing lenses for hard x-rays,” J. Phys.: Conf. Ser. 186, 012062 (2009). [CrossRef]
  10. L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, and A. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(Pt 3), 325–329 (2009). [CrossRef] [PubMed]
  11. L. Alianelli, K. J. S. Sawhney, I. Snigireva, A. Snigirev, R. Garrett, I. Gentle, K. Nugent, and S. Wilkins, “Focusing kinoform lenses: optical design and experimental validation,” AIP Conf. Proc. 1234, 633–636 (2010). [CrossRef]
  12. A. Snigirev, I. Snigireva, V. Kohn, V. Yunkin, S. Kuznetsov, M. B. Grigoriev, T. Roth, G. Vaughan, and C. Detlefs, “X-ray nanointerferometer based on si refractive bilenses,” Phys. Rev. Lett. 103(6), 064801 (2009). [CrossRef] [PubMed]
  13. C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. Van der Hart, and M. Kuchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005). [CrossRef]
  14. A. Snigirev, I. Snigireva, M. Grigoriev, V. Yunkin, M. D. Michiel, G. Vaughan, V. Kohn, and S. Kuznetsov, “High energy X-ray nanofocusing by silicon planar lenses,” J. Phys.: Conf. Ser. 186, 012072 (2009). [CrossRef]
  15. H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008). [CrossRef]
  16. H. Yan, “X-ray nanofocusing by kinoform lenses: a comparative study using different modeling approaches,” Phys. Rev. B 81(7), 075402 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited