OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11128–11137

Discrimination of one-photon and two-photon coherence parts in electromagnetically induced transparency for a ladder-type three-level atomic system

Heung-Ryoul Noh and Han Seb Moon  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11128-11137 (2011)
http://dx.doi.org/10.1364/OE.19.011128


View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present discrimination of the effect of one-photon and two-photon coherences in electromagnetically induced transparency for a three-level ladder-type atomic system. After the optical Bloch equations for a three-level atom, with either cycling or non-cycling transitions, were solved numerically, the solutions were averaged over the velocity distribution and finite transit time. Through this we were able to discriminate one-photon and two-photon coherence parts of the calculated spectra. We also found that the spectra showed peaks as the branching ratio of the intermediate (excited) state increased (decreased). The experimental results of previous reports [H. S. Moon, et al., Opt. Express 16, 12163 (2008); H. S. Moon and H. R. Noh, J. Phys. B 44, 055004 (2011)] could well be accounted for by this discrimination of one-photon and two-photon coherences in the transmittance signals for the simplified three-level atomic system.

© 2011 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.3690) Atomic and molecular physics : Line shapes and shifts
(020.4180) Atomic and molecular physics : Multiphoton processes
(300.6210) Spectroscopy : Spectroscopy, atomic

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: April 11, 2011
Revised Manuscript: May 16, 2011
Manuscript Accepted: May 17, 2011
Published: May 23, 2011

Citation
Heung-Ryoul Noh and Han Seb Moon, "Discrimination of one-photon and two-photon coherence parts in electromagnetically induced transparency for a ladder-type three-level atomic system," Opt. Express 19, 11128-11137 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11128


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997). [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  3. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998). [CrossRef]
  4. E. Arimondo, “Coherent population trapping in laser spectroscopy,” Prog. Opt. 35, 257–354 (1996). [CrossRef]
  5. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef] [PubMed]
  6. D. Budker and M. V. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007). [CrossRef]
  7. M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003). [CrossRef]
  8. K. Hammerer, A. S. Søorensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010). [CrossRef]
  9. C. Y. Ye and A. S. Zibrov, “Width of the electromagnetically induced transparency resonance in atomic vapor,” Phys. Rev. A 65, 023806 (2002). [CrossRef]
  10. W. Jiang, Q.-F. Chen, Y.-S. Zhang, and G.-C. Guo, “Optical pumping-assisted electromagnetically induced transparency,” Phys. Rev. A 73, 053804 (2006). [CrossRef]
  11. J. I. Kim, D. Haubrich, B. Kloter, and D. Meschede, “Strong effective saturation by optical pumping in three-level systems,” Phys. Rev. A 80, 063801 (2009). [CrossRef]
  12. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Two-photon effects in continuous-wave electromagnetically-induced transparency,” Opt. Commun. 119, 61–68 (1995). [CrossRef]
  13. J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995). [CrossRef] [PubMed]
  14. S. Wielandy and A. L. Gaeta, “Investigation of electromagnetically induced transparency in the strong probe regime,” Phys. Rev. A 58, 2500–2505 (1998). [CrossRef]
  15. D. McGloin, M. H. Dunn, and D. J. Fulton, “Polarization effects in electromagnetically induced transparency,” Phys. Rev. A 62, 053802 (2000). [CrossRef]
  16. S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2001). [CrossRef]
  17. H. S. Moon, L. Lee, and J. B. Kim, “Coupling-intensity effects in ladder-type electromagnetically induced transparency of rubidium atoms,” J. Opt. Soc. Am. B 22, 2529–2533 (2005). [CrossRef]
  18. J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001). [CrossRef]
  19. B. Yang, Q. Liang, J. He, T. Zhang, and J. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81, 043803 (2010). [CrossRef]
  20. N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, “Interference between electromagnetically induced transparency and two-step excitation in three-level ladder systems,” J. Opt. Soc. Am. B 27, 1645–1650 (2010). [CrossRef]
  21. T. Y. Abi-Salloum, “Quantum interference between competing optical pathways in a three-level ladder system,” J. Mod. Opt. 57, 1366–1376 (2010). [CrossRef]
  22. H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping effects in electromagnetically induced transparency,” Opt. Express 16, 12163–12170 (2008). [CrossRef] [PubMed]
  23. H. S. Moon and H. R. Noh, “Optical pumping effects in ladder-type electromagnetically induced transparency of 5S1/2−5P3/2−5D3/2 transition of 87Rb atoms,” J. Phys. B 44, 055004 (2011). [CrossRef]
  24. H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping of Rb atoms,” J. Opt. Soc. Am. B 24, 2157–2164 (2007). [CrossRef]
  25. H. R. Noh and H. S. Moon, “Calculation of line shapes in double-resonance optical pumping,” Phys. Rev. A 80, 022509 (2009). [CrossRef]
  26. P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008). [CrossRef]
  27. D. Meschede, Optics, Light and Lasers (Wiley-VCH, 2007).
  28. J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium D1 line,” J. Phys. B 29, 2629–2643 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited