OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11202–11212

Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy

Vladimir Liberman, Ronen Adato, Alket Mertiri, Ahmet A. Yanik, Kai Chen, Thomas H. Jeys, Shyamsunder Erramilli, and Hatice Altug  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11202-11212 (2011)
http://dx.doi.org/10.1364/OE.19.011202


View Full Text Article

Enhanced HTML    Acrobat PDF (1204 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Our recent work has showed that diffractively coupled nanoplasmonic arrays for Fourier transform infrared (FTIR) microspectroscopy can enhance the Amide I protein vibrational stretch by up to 105 times as compared to plain substrates. In this work we consider computationally the impact of a microscope objective illumination cone on array performance. We derive an approach for computing angular- and spatially-averaged reflectance for various numerical aperture (NA) objectives. We then use this approach to show that arrays that are perfectly optimized for normal incidence undergo significant response degradation even at modest NAs, whereas arrays that are slightly detuned from the perfect grating condition at normal incidence irradiation exhibit only a slight drop in performance when analyzed with a microscope objective. Our simulation results are in good agreement with microscope measurements of experimentally optimized periodic nanoplasmonic arrays.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 7, 2011
Revised Manuscript: May 12, 2011
Manuscript Accepted: May 12, 2011
Published: May 24, 2011

Citation
Vladimir Liberman, Ronen Adato, Alket Mertiri, Ahmet A. Yanik, Kai Chen, Thomas H. Jeys, Shyamsunder Erramilli, and Hatice Altug, "Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy," Opt. Express 19, 11202-11212 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11202


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009). [CrossRef] [PubMed]
  2. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000). [CrossRef] [PubMed]
  3. T. K. Gaylord and G. R. Kilby, “Optical single-angle plane-wave transmittances/reflectances from Schwarzschild objective variable-angle measurements,” Rev. Sci. Instrum. 75(2), 317–323 (2004). [CrossRef]
  4. C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express 18(3), 3187–3198 (2010). [CrossRef] [PubMed]
  5. A. O. Pinchuk, “Angle dependent collective surface plasmon resonance in an array of silver nanoparticles,” J. Phys. Chem. A 113(16), 4430–4436 (2009). [CrossRef] [PubMed]
  6. Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D, 59271D-12 (2005). [CrossRef]
  7. H. P. Paudel, K. Bayat, M. F. Baroughi, S. May, and D. W. Galipeau, “FDTD simulation of metallic gratings for enhancement of electromagnetic field by surface plasmon resonance,” Proc. SPIE 7597, 759706, 759706-8 (2010). [CrossRef]
  8. F. Le and P. Nordlander, “Optical properties of metallic nanoparticle arrays for oblique excitation using the multiple unit cell method,” J. Comput. Theor. Nanosci. 6(9), 2031–2039 (2009). [CrossRef]
  9. S. Malynych and G. Chumanov, “Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays,” J. Am. Chem. Soc. 125(10), 2896–2898 (2003). [CrossRef] [PubMed]
  10. N. Félidj, G. Laurent, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” J. Chem. Phys. 123(22), 221103 (2005). [CrossRef] [PubMed]
  11. N. Félidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002). [CrossRef]
  12. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008). [CrossRef]
  13. G. R. Kilby and T. K. Gaylord, “Fourier transform infrared transmission microspectroscopy of photonic crystal structures,” Appl. Opt. 48(19), 3716–3721 (2009). [CrossRef] [PubMed]
  14. B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82(9), 3474–3486 (2010). [CrossRef] [PubMed]
  15. B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples,” Anal. Chem. 82(9), 3487–3499 (2010). [CrossRef] [PubMed]
  16. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011). [CrossRef] [PubMed]
  17. R. Bhargava, “Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology,” Anal. Bioanal. Chem. 389(4), 1155–1169 (2007). [CrossRef] [PubMed]
  18. R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express 18(5), 4526–4537 (2010). [CrossRef] [PubMed]
  19. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003). [CrossRef]
  20. FDTD Solutions, Lumerical, Inc..
  21. P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994). [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics. The Finite-Difference Time-Domain Method (Artech House, 2005), Ch. 13.
  23. M. Mishrikey, A. Fallahi, C. Hafner, and R. Vahldieck, “Improved performance of thin film broadband antireflective coatings,” Proc. SPIE 6717, 67102 (2007).
  24. N. T. Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther, “Interactive grid computing at Lincoln Laboratory,” Lincoln Lab. J. 16, 165–216 (2006).
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  26. G. R. Kilby and Ph. D. Dissertation, Infrared Methods Applied to Photonic Crystal Device Development (Georgia Institute of Technology, 2005).
  27. T. Tague, (personal communication, 2010).
  28. M. Boulet-Audet, T. Buffeteau, S. Boudreault, N. Daugey, and M. Pézolet, “Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra,” J. Phys. Chem. B 114(24), 8255–8261 (2010). [CrossRef] [PubMed]
  29. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited