OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11213–11219

Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser

Mohammad U. Piracha, Dat Nguyen, Ibrahim Ozdur, and Peter J Delfyett  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11213-11219 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1035 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A lidar system based on the coherent detection of oppositely chirped pulses generated using a 20 MHz mode locked laser and chirped fiber Bragg gratings is presented. Sub millimeter resolution ranging is performed with > 25 dB signal to noise ratio. Simultaneous, range and Doppler velocity measurements are experimentally demonstrated using a target moving at > 330 km/h inside the laboratory.

© 2011 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

Original Manuscript: March 14, 2011
Revised Manuscript: May 17, 2011
Manuscript Accepted: May 19, 2011
Published: May 24, 2011

Mohammad U. Piracha, Dat Nguyen, Ibrahim Ozdur, and Peter J Delfyett, "Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser," Opt. Express 19, 11213-11219 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Fujii, and T. Fukuchi, Laser Remote Sensing (Taylor & Francis, 2005).
  2. M. I. Skolnik, Introduction to Radar Systems (McGraw-Hill, 2001).
  3. H. Araki, S. Tazawa, H. Noda, Y. Ishihara, S. Goossens, S. Sasaki, N. Kawano, I. Kamiya, H. Otake, J. Oberst, and C. Shum, “Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry,” Science 323(5916), 897–900 (2009). [CrossRef] [PubMed]
  4. “Lidar Tracks CO2,” Gary Gimmestad, SPIE Professional January, 2011.
  5. B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, “Multiple-return laser radar for three-dimensional imaging through obscurations,” Appl. Opt. 41(15), 2791–2799 (2002). [CrossRef] [PubMed]
  6. M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10 (2001). [CrossRef]
  7. R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Range-resolved pulsed and CWFM lidars: potential capabilities comparison,” Appl. Phys. B 85(1), 149–162 (2006). [CrossRef]
  8. X. Sun, J. B. Abshire, M. A. Krainak, and W. B. Hasselbrack, “Photon counting pseudorandom noise code laser altimeters,” Proc. SPIE 6771, 677100 (2007).
  9. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008). [CrossRef] [PubMed]
  10. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010). [CrossRef]
  11. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009). [CrossRef]
  12. Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49(2), 213–219 (2010). [CrossRef] [PubMed]
  13. K. W. Holman, D. G. Kocher, and S. Kaushik, “MIT/LL development of broadband linear frequency chirp for high-resolution ladar,” Proc. SPIE 6572, 65720J (2007). [CrossRef]
  14. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009). [CrossRef] [PubMed]
  15. A. Vasilyev, N. Satyan, S. Xu, G. Rakuljic, and A. Yariv, “Multiple source frequency-modulated continuous-wave optical reflectometry: theory and experiment,” Appl. Opt. 49(10), 1932–1937 (2010). [CrossRef] [PubMed]
  16. P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009). [CrossRef] [PubMed]
  17. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44(35), 7621–7629 (2005). [CrossRef] [PubMed]
  18. C. J. Karlsson, F. A. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39(21), 3716–3726 (2000). [CrossRef]
  19. R. Schneider, P. Thurmel, and M. Stockmann, “Distance measurement of moving objects by frequency modulated laser radar,” Opt. Eng. 40(1), 33–37 (2001). [CrossRef]
  20. D. F. Pierrottet, F. Amzajerdian, L. Petway, B. Barnes, G. Lockard, and M. Rubio, “Linear FMCW laser radar for precision range and vector velocity measurements,” Proc. Mater. Res. Soc. Symp. (2008).
  21. R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, and Y. Fainman, “Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry,” Opt. Express 15(23), 15464–15479 (2007). [CrossRef] [PubMed]
  22. K. Kim, S. Lee, and P. J. Delfyett, “eXtreme chirped pulse amplification beyond the fundamental energy storage limit of semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 12(2), 245–254 (2006). [CrossRef]
  23. S. Lee, D. Mandridis, and P. J. Delfyett., “eXtreme chirped pulse oscillator operating in the nanosecond stretched pulse regime,” Opt. Express 16(7), 4766–4773 (2008). [CrossRef] [PubMed]
  24. M. U. Piracha, D. Nguyen, D. Mandridis, T. Yilmaz, I. Ozdur, S. Ozharar, and P. J. Delfyett, “Range resolved lidar for long distance ranging with sub-millimeter resolution,” Opt. Express 18(7), 7184–7189 (2010). [CrossRef] [PubMed]
  25. J. A. Conway, G. A. Sefler, J. T. Chou, and G. C. Valley, “Phase ripple correction: theory and application,” Opt. Lett. 33(10), 1108–1110 (2008). [CrossRef] [PubMed]
  26. T.-J. Ahn, J. Y. Lee, and D. Y. Kim, “Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation,” Appl. Opt. 44(35), 7630–7634 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited