OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11220–11227

Thermo-optical tunable planar ridge microdisk resonator in silicon-on-insulator

Junfeng Song, Qing Fang, Xianshu Luo, Hong Cai, T.-Y. Liow, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11220-11227 (2011)
http://dx.doi.org/10.1364/OE.19.011220


View Full Text Article

Enhanced HTML    Acrobat PDF (1293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we design and demonstrate planar ridge microdisk resonators in silicon-on-insulator, which assemble the advantages of microring and microdisk resonators. The dependences of resonator optical modes on the slab thickness and the waveguide-to-resonator coupling gap are investigated. The highest Q-factor obtained is ~4 × 105. Using the thermo-optical effect, we attain a resonance wavelength tuning efficiency of ~66.5 pm/mW. We also compare the transmission spectra measured by using wavelength-scanning method and voltage-scanning method and show potential application for the adopted voltage-scanning method.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.0230) Optical devices : Optical devices
(230.3990) Optical devices : Micro-optical devices
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: March 10, 2011
Revised Manuscript: April 25, 2011
Manuscript Accepted: May 5, 2011
Published: May 25, 2011

Citation
Junfeng Song, Qing Fang, Xianshu Luo, Hong Cai, T.-Y. Liow, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, "Thermo-optical tunable planar ridge microdisk resonator in silicon-on-insulator," Opt. Express 19, 11220-11227 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11220


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Zimmermann, Integrated Silicon Optoelectronics (Springer, 2000).
  2. L. Pavesi, “Will silicon be the photonic material of the third millenium?” J. Phys. Condens. Matter 15(26), R1169–R1196 (2003). [CrossRef]
  3. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4(6), 938–947 (1998). [CrossRef]
  4. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]
  5. P. Koonath, T. Indukuri, and B. Jalali, “Vertically-coupled micro-resonators realized using three-dimensional sculpting in silicon,” Appl. Phys. Lett. 85(6), 1018–1020 (2004). [CrossRef]
  6. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005). [CrossRef] [PubMed]
  7. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express 15(8), 4694–4704 (2007). [CrossRef] [PubMed]
  8. J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15(11), 6744–6749 (2007). [CrossRef] [PubMed]
  9. S.-Y. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18(20), 2096–2098 (2006). [CrossRef]
  10. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor based on an integrated optical microcavity,” Opt. Lett. 27(7), 512–514 (2002). [CrossRef]
  11. J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008). [CrossRef] [PubMed]
  12. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express 14(2), 817–831 (2006). [CrossRef] [PubMed]
  13. M. R. Watt, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” Group IV Photonics, 2008 5th IEEE international Conference 4–6 (2008).
  14. M. Rosenblit, P. Horak, S. Helsby, and R. Folman, “Single-atom detection using whispering-gallery modes of microdisk resonators,” Phys. Rev. A 70(5), 053808 (2004). [CrossRef]
  15. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003). [CrossRef] [PubMed]
  16. F. Gan, T. Barwicz, M. A. Popović, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures,” Optical Switch 2007, (IEEE, 2007), pp.153–154.
  17. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic Resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, p.CPDB10 (2009).
  18. J. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express 16(26), 21476–21482 (2008). [CrossRef] [PubMed]
  19. J. Song, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Fast and low power Michelson interferometer thermo-optical switch on SOI,” Opt. Express 16(20), 15304–15311 (2008). [CrossRef] [PubMed]
  20. R. M. Knox and P. P. Toulios, Integrated circuits for the millimeter through optical frequency range. Symposium on Submillimeter Waves, Polytechnic Institute of Brooklyn, pp. 497–516. 1970.
  21. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited