OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11236–11241

Transverse electric plasmons in bilayer graphene

Marinko Jablan, Hrvoje Buljan, and Marin Soljačić  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11236-11241 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (765 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We predict the existence of transverse electric (TE) plasmons in bilayer graphene. We find that their plasmonic properties are much more pronounced in bilayer than in monolayer graphene, in a sense that they can get more localized at frequencies just below h̄ω = 0.4 eV for adequate doping values. This is a consequence of the perfectly nested bands in bilayer graphene which are separated by ∼ 0.4 eV.

© 2011 OSA

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: January 13, 2011
Manuscript Accepted: March 15, 2011
Published: May 25, 2011

Marinko Jablan, Hrvoje Buljan, and Marin Soljačić, "Transverse electric plasmons in bilayer graphene," Opt. Express 19, 11236-11241 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Pines and P. Nozieres, The Theory of Quantum Liquids (Benjamin, 1966).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003). [CrossRef] [PubMed]
  3. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  4. S. Vedentam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9, 3447 (2009). [CrossRef]
  5. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength lght in air,” Phys. Rev. Lett. 95, 063901 (2005). [CrossRef] [PubMed]
  6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  7. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41 (2007). [CrossRef]
  8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  9. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788 (2004). [CrossRef] [PubMed]
  10. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666 (2004). [CrossRef] [PubMed]
  11. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109 (2009). [CrossRef]
  12. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2, 177 (2006). [CrossRef]
  13. X. F. Wang and T. Chakraborty, “Coulomb screening and collective excitations in a graphene bilayer,” Phys. Rev. B 75, 041404 (2007). [CrossRef]
  14. G. Borghi, M. Polini, R. Asgari, and A. H. MacDonald, “Dynamical response functions and collective modes of bilayer graphene,” Phys. Rev. B 80, 241402 (2009). [CrossRef]
  15. X. F. Wang and T. Chakraborty, “Coulomb screening and collective excitations in biased bilayer graphene,” Phys. Rev. B 81, 081402 (2010). [CrossRef]
  16. R. Sensarma, E. H. Hwang, and S. Das Sarma, “Dynamic screening and low-energy collective modes in bilayer graphene,” Phys. Rev. B 82, 195428 (2010).
  17. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” N. J. Phys. 8, 318 (2006). [CrossRef]
  18. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007). [CrossRef]
  19. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99, 016803 (2007). [CrossRef] [PubMed]
  20. F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnology 7, 91 (2008). [CrossRef]
  21. C. Kramberger, R. Hambach, C. Giorgetti, M. H. Rümmeli, M. Knupfer, J. Fink, B. Büchner, L. Reining, E. Einarsson, S. Maruyama, F. Sottile, K. Hannewald, V. Olevano, A. G. Marinopoulos, and T. Pichler, “Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene,” Phys. Rev. Lett. 100, 196803 (2008).
  22. Y. Liu, R. F. Willis, K. V. Emtsev, and Th. Seyller, “Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets,” Phys. Rev. B 78, 201403 (2008).
  23. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009). [CrossRef]
  24. E. J. Nicol and J. P. Carbotte, “Optical conductivity of bilayer graphene with and without an asymmetry gap,” Phys. Rev. B 77, 155409 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited