OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11256–11263

Enhancing solar cells with localized plasmons in nanovoids

N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11256-11263 (2011)
http://dx.doi.org/10.1364/OE.19.011256


View Full Text Article

Enhanced HTML    Acrobat PDF (920 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Localized plasmon resonances of spherical nanovoid arrays strongly enhance solar cell performance by a factor of 3.5 in external quantum efficiency at plasmonic resonances, and a four-fold enhancement in overall power conversion efficiency. Large area substrates of silver nanovoids are electrochemically templated through self-assembled colloidal spheres and organic solar cells fabricated on top. Our design represents a new class of plasmonic photovoltaic enhancement: that of localized plasmon-enhanced absorption within nanovoid structures. Angularly-resolved spectra demonstrate strong localized Mie plasmon modes within the nanovoids. Theoretical modelling shows varied spatial dependence of light intensity within the void region suggesting a first possible route towards Third Generation plasmonic photovoltaics.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Solar Energy

History
Original Manuscript: January 21, 2011
Revised Manuscript: April 8, 2011
Manuscript Accepted: April 16, 2011
Published: May 25, 2011

Citation
N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, "Enhancing solar cells with localized plasmons in nanovoids," Opt. Express 19, 11256-11263 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11256


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 4794–4808 (2010). [CrossRef] [PubMed]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed]
  3. K. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008). [CrossRef] [PubMed]
  4. V. Ferry, M. Verschuuren, H. Li, E. Verhagen, B. Hongbo, R. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, 237–245 (2010). [CrossRef]
  5. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10, 1979–1984 (2010). [CrossRef]
  6. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008). [CrossRef]
  7. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. (2010), . [PubMed]
  8. K. Soderstrom, F. Haug, J. Escarre, O. Cubero, and C. Ballif, “Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler,” Appl. Phys. Lett. 96, 213508 (2010). [CrossRef]
  9. C. Chao, C. Wang, and J. Chang, “Spatial distribution of absorption in plasmonic thin film solar cells,” Opt. Express 18, 11763–11771 (2010). [CrossRef] [PubMed]
  10. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009). [CrossRef]
  11. N. C. Lindquist, W. A. Luhman, S.-H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008). [CrossRef]
  12. K. Tvingstedt, N.-K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett. 91, 113514 (2007). [CrossRef]
  13. J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Func. Mater. 20, 3918–3924 (2010). [CrossRef]
  14. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18, 620–630 (2010). [CrossRef]
  15. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009).
  16. T. H. Reilly, J. van De Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett. 92, 243304 (2008). [CrossRef]
  17. R. M. Cole, J. J. Baumberg, F. J. Garcia De Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett. 7, 2094–2100 (2007). [CrossRef]
  18. T. Kelf, Y. Sugawara, R. Cole, J. Baumberg, M. Abdelsalam, S. Cintra, S. Mahajan, A. Russell, and P. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74, 1–12 (2006). [CrossRef]
  19. P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells?” Opt. Express 17, 20975–20990 (2009). [CrossRef] [PubMed]
  20. S. Mahajan, R. M. Cole, B. F. Soares, S. H. Pelfrey, A. E. Russell, J. J. Baumberg, and P. N. Bartlett, “Relating SERS intensity to specific plasmon modes on sphere segment void surfaces,” J. Phys. Chem. C 113, 9284–9289 (2009). [CrossRef]
  21. J. Baumberg, “Plasmon-enhanced low-cost photovoltaics,” EU Patent 2047521 (2007).
  22. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010). [CrossRef]
  23. M. E. Abdelsalam, P. N. Bartlett, T. Kelf, and J. J. Baumberg, “Wetting of regularly structured gold surfaces,” Langmuir 21, 1753–1757 (2005). [CrossRef] [PubMed]
  24. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008). [CrossRef]
  25. P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, “Highly ordered macroporous gold and platinum films formed by electrochemical deposition through templates assembled from submicron diameter monodisperse polystyrene spheres,” Chem. Mater. 14, 2199–2208 (2002). [CrossRef]
  26. F. Garcia De Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998). [CrossRef]
  27. H. Hoppe, S. Shokhovets, and G. Gobsch, “Inverse relation between photocurrent and absorption layer thickness in polymer solar cells,” Phys. Status Solidi (RRL) 1, R40–R42 (2007). [CrossRef]
  28. L. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)poly(4-styrenesulfonate),” Org. Electron. 3, 143–148 (2002). [CrossRef]
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  30. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5, 197–203 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited