OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11330–11339

Guided mode biosensor based on grating coupled porous silicon waveguide

Xing Wei and Sharon M. Weiss  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11330-11339 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Porous silicon waveguide biosensors that utilize grating couplers etched directly into porous silicon are demonstrated for improved molecular detection capabilities. Molecules are infiltrated through the grating couplers into the waveguide where they can interact with a guided waveguide mode. Hybridization of nucleic acids inside the waveguide is shown to significantly perturb the wave vector of the guided mode and is detected through angle-resolved reflectance measurements. A detection sensitivity of 7.3°/mM is demonstrated with selectivity better than 6:1 compared to mismatched sequences. Experimental results are in good agreement with calculations based on rigorous coupled wave analysis. Use of the all-porous silicon grating-coupled waveguide allows improved interaction of the optical field with surface-bound molecules compared to evanescent wave-based biosensors.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.6010) Integrated optics : Sensors

ToC Category:

Original Manuscript: March 30, 2011
Revised Manuscript: May 18, 2011
Manuscript Accepted: May 18, 2011
Published: May 26, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Xing Wei and Sharon M. Weiss, "Guided mode biosensor based on grating coupled porous silicon waveguide," Opt. Express 19, 11330-11339 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Lukosz and K. Tiefenthaler, “Sensitivity of integrated optical grating and prism couplers as (bio)chemical sensors,” Sens. Actuators B 15, 273–284 (1988). [CrossRef]
  2. R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical wave-guide mach-zehnder interferometer immunosensor,” Sens. Actuators B 10(3), 209–217 (1993). [CrossRef]
  3. A. Brandenburg, R. Polzius, F. Bier, U. Bilitewski, and E. Wagner, “Direct observation of affinity reactions by reflected-mode operation of integrated optical grating coupler,” Sens. Actuators B 30(1), 55–59 (1996). [CrossRef]
  4. R. Polzius, T. Schneider, F. F. Biert, U. Bilitewski, and W. Koschinski, “Optimization of biosensing using grating couplers: immobilization on tantalum oxide waveguides,” Biosens. Bioelectron. 11(5), 503–514 (1996). [CrossRef] [PubMed]
  5. R. Polzius, E. Diessel, F. F. Bier, and U. Bilitewski, “Real-time observation of affinity reactions using grating couplers: determination of the detection limit and calculation of kinetic rate constants,” Anal. Biochem. 248(2), 269–276 (1997). [CrossRef] [PubMed]
  6. P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B 97(1), 5–8 (2009). [CrossRef]
  7. R. E. Kunz and K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem. 384(1), 180–190 (2006). [CrossRef]
  8. J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D. X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009). [CrossRef] [PubMed]
  9. R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors 11(2), 1476–1488 (2011). [CrossRef]
  10. D. J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang, “Multifunctional Nanowire Evanescent Wave Optical Sensors,” Adv. Mater. 19(1), 61–66 (2007). [CrossRef]
  11. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  12. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006). [CrossRef]
  13. A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009). [CrossRef] [PubMed]
  14. X. Wei, C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, “Grating couplers on porous silicon planar waveguides for sensing applications,” J. Appl. Phys. 104(12), 123113 (2008). [CrossRef]
  15. A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  16. R. J. Stockermans and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt. 38(17), 3714–3719 (1999). [CrossRef]
  17. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  18. Y. Jiao and S. M. Weiss, “Design parameters and sensitivity analysis of polymer-cladded porous silicon waveguides for small molecule detection,” Biosens. Bioelectron. 25(6), 1535–1538 (2010). [CrossRef]
  19. S. Grego, J. R. McDaniel, and B. R. Stoner, “Wavelength interrogation of grating-based optical biosensors in the input coupler configuration,” Sens. Actuators B 131(2), 347–355 (2008). [CrossRef]
  20. X. Wei, C. Kang, G. Rong, S. T. Retterer, and S. M. Weiss, “Porous silicon waveguide with integrated grating coupler for DNA sensing,” Proc. SPIE 7167, 71670C, 71670C-7 (2009). [CrossRef]
  21. J. L. Lawrie, Y. Jiao, and S. M. Weiss, “Size-dependent infiltration and optical detection of nucleic acids in nanoscale pores,” IEEE Trans. NanoTechnol. 9(5), 596–602 (2010). [CrossRef]
  22. M. Egholm, O. Buchardt, L. Christensen, C. Behrens, S. M. Freier, D. A. Driver, R. H. Berg, S. K. Kim, B. Norden, and P. E. Nielsen, “PNA Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules,” Nature 365(6446), 566–568 (1993). [CrossRef] [PubMed]
  23. F. Michelotti, B. Sciacca, L. Dominici, M. Quaglio, E. Descrovi, F. Giorgis, and F. Geobaldo, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12(2), 502–506 (2009). [CrossRef] [PubMed]
  24. M. M. Orosco, C. Pacholski, and M. J. Sailor, “Real-time monitoring of enzyme activity in a mesoporous silicon double layer,” Nat. Nanotechnol. 4(4), 255–258 (2009). [CrossRef] [PubMed]
  25. H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006). [CrossRef]
  26. B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21(14), 6451–6461 (2005). [CrossRef] [PubMed]
  27. A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, “The effect of surface probe density on DNA hybridization,” Nucleic Acids Res. 29(24), 5163–5168 (2001). [CrossRef]
  28. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20(13), 5539–5543 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited