OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11365–11374

White light Bessel-like beams generated by miniature all-fiber device

X. Zhu, A. Schülzgen, H. Wei, K. Kieu, and N. Peyghambarian  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11365-11374 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1183 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Micron-sized white light propagation invariant beams generated by a simple and compact fiber device are presented. The all-fiber device is fabricated by splicing a short piece of large-core multimode fiber onto a small-core single mode white light delivery fiber. Because this fiber device offers an inherent spatial coherence, nondiffracting white light beams can be created with a temporally incoherent broadband light source (a halogen bulb) and, most importantly, the surrounding fringes don’t fade as the bandwidth of the light source increases because the underlying physics of this fiber device is different from that of the axicon. White light Bessel-like beams have been generated from multimode fibers with core diameters of 50 μm, 105 μm, and 200 μm. The distance of nondiffracting propagation of the white light Bessel beam increases with increasing core size of the multimode fiber. Propagation characteristics of red, green, and blue individual beams are also presented.

© 2011 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(140.3330) Lasers and laser optics : Laser damage
(260.1960) Physical optics : Diffraction theory
(230.2285) Optical devices : Fiber devices and optical amplifiers

ToC Category:
Physical Optics

Original Manuscript: March 2, 2011
Revised Manuscript: April 27, 2011
Manuscript Accepted: May 15, 2011
Published: May 26, 2011

X. Zhu, A. Schülzgen, H. Wei, K. Kieu, and N. Peyghambarian, "White light Bessel-like beams generated by miniature all-fiber device," Opt. Express 19, 11365-11374 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002). [CrossRef] [PubMed]
  2. V. Karásek, T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101(14), 143601 (2008). [CrossRef] [PubMed]
  3. T. Wulle and S. Herminghaus, “Nonlinear optics of Bessel beams,” Phys. Rev. Lett. 70(10), 1401–1404 (1993). [CrossRef] [PubMed]
  4. K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008). [CrossRef] [PubMed]
  5. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys., A Mater. Sci. Process. 84(4), 423–430 (2006). [CrossRef]
  6. M. Fortin, M. Piché, and E. F. Borra, “Optical tests with Bessel beam interferometry,” Opt. Express 12(24), 5887–5895 (2004). [CrossRef] [PubMed]
  7. M. Erdélyi, Z. L. Horvath, G. Szabo, Zs. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for application in optical microlithography,” J. Vac. Sci. Technol. B 15(2), 287–292 (1997). [CrossRef]
  8. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987). [CrossRef]
  9. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  10. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6(1), 150–152 (1989). [CrossRef]
  11. J. A. Davis, E. Carcole, and D. M. Cottrell, “Nondiffracting interference patterns generated with programmable spatial light modulators,” Appl. Opt. 35(4), 599–602 (1996). [CrossRef] [PubMed]
  12. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6(11), 1748–1754 (1989). [CrossRef] [PubMed]
  13. S. K. Eah, W. Jhe, and Y. Arakawa, “Nearly diffraction-limited focusing of a fiber axicon microlens,” Rev. Sci. Instrum. 74(11), 4969–4971 (2003). [CrossRef]
  14. S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolou, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83(4-9), 804–807 (2006). [CrossRef]
  15. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46(33), 8061–8067 (2007). [CrossRef] [PubMed]
  16. V. S. Ilchenko, M. Mohageg, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Efficient generation of truncated Bessel beams using cylindrical waveguides,” Opt. Express 15(9), 5866–5871 (2007). [CrossRef] [PubMed]
  17. J. K. Kim, J. Kim, Y. Jung, W. Ha, Y. S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact all-fiber Bessel beam generator based on hollow optical fiber combined with a hybrid polymer fiber lens,” Opt. Lett. 34(19), 2973–2975 (2009). [CrossRef] [PubMed]
  18. M. Brunel and S. Coetmellec, “Generation of nondiffracting beams through an opaque disk,” J. Opt. Soc. Am. A 24(12), 3753–3761 (2007). [CrossRef]
  19. E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31(21), 3155–3157 (2006). [CrossRef] [PubMed]
  20. X. Zhu, A. Schülzgen, L. Li, and N. Peyghambarian, “Generation of controllable nondiffracting beams using multimode optical fibers,” Appl. Phys. Lett. 94(20), 201102 (2009). [CrossRef]
  21. S. Ramachandran and S. Ghalmi, “‘Diffraction-free,’ self-healing bessel beams from fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CPDB5.
  22. L. Basano and P. Ottonello, “Demonstration experiments on nondiffracting beams generated by thermal light,” Am. J. Phys. 73(9), 826–830 (2005). [CrossRef]
  23. P. Fischer, C. T. A. Brown, J. E. Morris, C. López-Mariscal, E. M. Wright, W. Sibbett, and K. Dholakia, “White light propagation invariant beams,” Opt. Express 13(17), 6657–6666 (2005). [CrossRef] [PubMed]
  24. P. Fischer, H. Little, R. L. Smith, C. Lopez-Mariscal, C. T. A. Brown, W. Sibbett, and K. Dholakia, “Wavelength dependent propagation and reconstruction of white light Bessel beams,” J. Opt. A, Pure Appl. Opt. 8(5), 477–482 (2006). [CrossRef]
  25. J. Leach, G. M. Gibson, M. J. Padgett, E. Esposito, G. McConnell, A. J. Wright, and J. M. Girkin, “Generation of achromatic Bessel beams using a compensated spatial light modulator,” Opt. Express 14(12), 5581–5587 (2006). [CrossRef] [PubMed]
  26. T. Cižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16(18), 14024–14035 (2008). [CrossRef] [PubMed]
  27. X. Zhu, A. Schülzgen, H. Li, L. Li, L. Han, J. V. Moloney, and N. Peyghambarian, “Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers,” Opt. Express 16(21), 16632–16645 (2008). [PubMed]
  28. X. Zhu, A. Schülzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18(7), 7506–7520 (2010). [CrossRef] [PubMed]
  29. X. Zhu, A. Schülzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15(1), 71–78 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited