OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11375–11380

Theoretical and experimental research on designer surface plasmons in a metamaterial with double sets of circular holes

Kejia Wang, Lan Ding, Jinsong Liu, Jing Zhang, Xinmi Yang, Jessie Y. Chin, and Tie Jun Cui  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11375-11380 (2011)
http://dx.doi.org/10.1364/OE.19.011375


View Full Text Article

Enhanced HTML    Acrobat PDF (898 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The designer surface plasmons (DSPs) are studied by the use of a kind of metamaterial with a structure of double sets of circular holes: subwavelength apertures, and indentations. The diameter and spacing of the indentations are smaller at least one order of magnitude than those of the apertures. A theoretical model is built to analyze the DSPs sustained by the indentations by using effective dipoles method. The influence of the DSPs on the transmission property is revealed for electromagnetic waves passing through the apertures. In order to verify the theoretical predication, a set of the metamaterial samples is made and the transmission spectra are measured in microwave regime. Our results provide a new proof for the existence of DSPs and are promising for proposing some techniques for optoelectronic devices in terahertz and microwave regime.

© 2011 OSA

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(260.2110) Physical optics : Electromagnetic optics
(310.2790) Thin films : Guided waves
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 28, 2011
Revised Manuscript: May 16, 2011
Manuscript Accepted: May 16, 2011
Published: May 26, 2011

Citation
Kejia Wang, Lan Ding, Jinsong Liu, Jing Zhang, Xinmi Yang, Jessie Y. Chin, and Tie Jun Cui, "Theoretical and experimental research on designer surface plasmons in a metamaterial with double sets of circular holes," Opt. Express 19, 11375-11380 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11375


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005). [CrossRef]
  3. F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005). [CrossRef]
  4. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005). [CrossRef] [PubMed]
  5. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30(10), 1210–1212 (2005). [CrossRef] [PubMed]
  6. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008). [CrossRef]
  7. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005). [CrossRef] [PubMed]
  8. L. F. Shen, X. D. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008). [CrossRef] [PubMed]
  9. Y. C. Lan and R. L. Chern, “Surface plasmon-like modes on structured perfectly conducting surfaces,” Opt. Express 14(23), 11339–11347 (2006). [CrossRef] [PubMed]
  10. S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces,” Appl. Phys. Lett. 88(25), 251120 (2006). [CrossRef]
  11. F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007). [CrossRef]
  12. E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78(23), 235426 (2008). [CrossRef]
  13. B. K. Juluri, S.-C. S. Lin, T. R. Walker, L. Jensen, and T. J. Huang, “Propagation of designer surface plasmons in structured conductor surfaces with parabolic gradient index,” Opt. Express 17(4), 2997–3006 (2009). [CrossRef] [PubMed]
  14. N. F. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. H. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof surface plasmon structures collimate terahertz laser beams,” Nat. Mater. 9(9), 730–735 (2010). [CrossRef] [PubMed]
  15. N. Talebi and M. Shahabadi, “Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide,” J. Phys. D Appl. Phys. 43(13), 135302 (2010). [CrossRef]
  16. J. S. Liu, L. Ding, K. J. Wang, and J. Q. Yao, “A method to design transmission resonances through subwavelength apertures based on designed surface plasmons,” Opt. Express 17(15), 12714–12722 (2009). [CrossRef] [PubMed]
  17. S. A. Maier, Plasmonics-Fundamentals and Applications (Springer, New York, 2007)
  18. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  19. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  20. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998). [CrossRef]
  21. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  22. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited