OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11387–11396

Plasmon delocalization onset in finite sized nanostructures

Arash Farhang and Olivier J. F. Martin  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11387-11396 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1179 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transition from localized to delocalized plasmons (i.e. the transition from a situation where the decay length of a travelling surface plasma wave is greater than its propagation distance to a situation where it is smaller) and hence the onset of plasmon delocalization is studied in a single 2D silver nanoparticle of increasing length. A fourier analysis in the near-field of the nanoparticle is used as the main tool for analysis. This method, along with far-field scattering spectra simulations and the near-field profile directly above and along the length of the nanoparticle are used to investigate and clearly show the transition from localized to delocalized modes. In particular, it is found that for a finite sized rectangular nanoparticle, both the emerging odd and even delocalized modes are nothing but a superposition of many standing wave plasmon modes. As a consequence, even very short metal films can support delocalized plasmons that bounce back and forth along the film.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: April 7, 2011
Revised Manuscript: May 12, 2011
Manuscript Accepted: May 15, 2011
Published: May 26, 2011

Arash Farhang and Olivier J. F. Martin, "Plasmon delocalization onset in finite sized nanostructures," Opt. Express 19, 11387-11396 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005). [CrossRef] [PubMed]
  2. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006). [CrossRef] [PubMed]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  4. A. Unger, U. Rietzler, R. Berger, and M. Kreiter, “Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids,” Nano Lett. 9(6), 2311–2315 (2009). [CrossRef] [PubMed]
  5. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010). [CrossRef] [PubMed]
  6. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003). [CrossRef] [PubMed]
  7. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004). [CrossRef] [PubMed]
  8. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7(5), 1318–1322 (2007). [CrossRef] [PubMed]
  9. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007). [CrossRef] [PubMed]
  10. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  11. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]
  12. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24(15), 1011–1013 (1999). [CrossRef]
  13. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007). [CrossRef] [PubMed]
  14. A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008). [CrossRef]
  15. G. Colas des Francs, J. Grandidier, S. Massenot, A. Bouhelier, J.-C. Weeber, and A. Dereux, “Integrated plasmonic waveguides: a mode solver based on density of states formulation,” Phys. Rev. B 80(11), 115419 (2009). [CrossRef]
  16. A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” N. J. Phys. 11(1), 015002 (2009). [CrossRef]
  17. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87(16), 167401 (2001). [CrossRef] [PubMed]
  18. S. Balci, A. Kocabas, C. Kocabas, and A. Aydinli, “Localization of surface plasmon polaritons in hexagonal arrays of Moire cavities,” Appl. Phys. Lett. 98(3), 031101–031103 (2011). [CrossRef]
  19. G. Lévêque and O. J. F. Martin, “Optical interactions in a plasmonic particle coupled to a metallic film,” Opt. Express 14(21), 9971–9981 (2006). [CrossRef] [PubMed]
  20. A. Christ, G. Lévêque, O. J. F. Martin, T. Zentgraf, J. Kuhl, C. Bauer, H. Giessen, and S. G. Tikhodeev, “Near-field-induced tunability of surface plasmon polaritons in composite metallic nanostructures,” J. Microsc. 229(Pt 2), 344–353 (2008). [CrossRef] [PubMed]
  21. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). [CrossRef] [PubMed]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  23. W. Lukosz and M. Meier, “Lifetimes and radiation patterns of luminescent centers close to a thin metal film,” Opt. Lett. 6(5), 251–253 (1981). [CrossRef] [PubMed]
  24. M. Paulus and O. J. F. Martin, “Green's tensor technique for scattering in two-dimensional stratified media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63, 066615 (2001). [CrossRef] [PubMed]
  25. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957). [CrossRef]
  26. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981). [CrossRef]
  27. S. A. Maier, Plasmonics: Fundamentals and Applications (Spinger-Verlag, 2007).
  28. J. Nelayah, M. Kociak, O. Stéphan, N. Geuquet, L. Henrard, F. J. García de Abajo, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms,” Nano Lett. 10(3), 902–907 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (145 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited