OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11405–11414

Wavelength-selective addressing of visible and near-infrared plasmon resonances for SU8 nanolithography

Anouk de Hoogh, Bob Hommersom, and A. Femius Koenderink  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11405-11414 (2011)
http://dx.doi.org/10.1364/OE.19.011405


View Full Text Article

Enhanced HTML    Acrobat PDF (2866 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We imprint plasmonic near field enhancements as nanoscale topography in SU8 photoresist using two-photon absorption from a spectrally filtered broadband supercontinuum light source. Imprinted patterns smaller than 50 nm across are obtained localized at positions of high local field enhancements in gold bow tie antennas, and gold split rings resonant in the visible and near-infrared. Enhanced exposure only occurs at wavelengths and polarizations that exactly match the plasmonic resonances. Hence our work demonstrates that wavelength selective addressing of hot spots for nanolithography using an inexpensive, low peak-power picosecond pulsed source is freely tunable throughout the visible and infrared to match any desired plasmon resonance.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(180.4243) Microscopy : Near-field microscopy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 26, 2011
Revised Manuscript: May 20, 2011
Manuscript Accepted: May 20, 2011
Published: May 26, 2011

Citation
Anouk de Hoogh, Bob Hommersom, and A. Femius Koenderink, "Wavelength-selective addressing of visible and near-infrared plasmon resonances for SU8 nanolithography," Opt. Express 19, 11405-11414 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11405


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007). [CrossRef]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010). [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008). [CrossRef]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010). [CrossRef]
  6. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bow tie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). PMID: . [CrossRef] [PubMed]
  7. O. J. F. Martin, “Surface plasmon illumination scheme for contact lithography beyond the diffraction limit,” Microelectron. Eng. 67–68, 24–30 (2003). [CrossRef]
  8. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004). [CrossRef]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]
  10. D. B. Shao and S. C. Chen, “Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography,” Nano Lett. 6, 2279–2283 (2006). [CrossRef] [PubMed]
  11. K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc 130, 6928–6929 (2008). [CrossRef] [PubMed]
  12. N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C 113, 1147–1149 (2009). [CrossRef]
  13. K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett. 1, 657–662 (2010). [CrossRef]
  14. C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-h. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, “Near-field photochemical imaging of noble metal nanostructures,” Nano Lett. 5, 615–619 (2005). [CrossRef] [PubMed]
  15. C. Deeb, R. Bachelot, J. Plain, A.-L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, “Quantitative analysis of localized surface plasmons based on molecular probing,” ACS Nano 4, 4579–4586 (2010). [CrossRef] [PubMed]
  16. A. F. Koenderink, J. V. Hernández, F. Robicheaux, L. D. Noordam, and A. Polman, “Programmable nanolithography with plasmon nanoparticle arrays,” Nano Lett. 7, 745–749 (2007). [CrossRef] [PubMed]
  17. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145–3149 (2007). [CrossRef] [PubMed]
  18. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, “Digital plasmonics,” Nat. Photonics (in press) arXiv:1011.4244 (2011).
  19. P. S. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]
  20. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 165409 (2005). [CrossRef]
  21. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008). [CrossRef] [PubMed]
  22. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  23. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006). [CrossRef] [PubMed]
  24. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33, 848–850 (2008). [CrossRef] [PubMed]
  25. D. Diessel, M. Decker, S. Linden, and M. Wegener, “Near-field optical experiments on low-symmetry split-ring-resonator arrays,” Opt. Lett. 35, 3661–3663 (2010). [CrossRef] [PubMed]
  26. G. Boudarham, N. Feth, V. Myroshnychenko, S. Linden, J. G. de Abajo, M. Wegener, and M. Kociak, “Spectral imaging of individual split-ring resonators,” Phys. Rev. Lett. 105, 255501 (2010). [CrossRef]
  27. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902 (2009). [CrossRef]
  28. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “Su-8: a low-cost negative resist for mems,” J. Micromech. Microeng. 7, 121–124 (1997). [CrossRef]
  29. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009). [CrossRef] [PubMed]
  30. Y. Bi and D. C. Neckers, “A visible light initiating system for free radical promoted cationic polymerization,” Macromolecules 27, 3683–3693 (1994). [CrossRef]
  31. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18, 10905–10923 (2010). [CrossRef] [PubMed]
  32. F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, J. König, G. Hüttmann, W. Paa, J. Popp, and W. Fritzsche, “Optically controlled thermal management on the nanometer length scale,” Nanotechnology 19, 055207 (2008). [CrossRef] [PubMed]
  33. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011). [CrossRef]
  34. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum,” Opt. Express 16, 8055–8055 (2008). [CrossRef]
  35. R. de Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004–2008 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited