OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11415–11421

Harmonic generation in silicon nitride ring resonators

Jacob S. Levy, Mark A. Foster, Alexander L. Gaeta, and Michal Lipson  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11415-11421 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate second- and third-harmonic generation in a centrosymmetric CMOS-compatible material using ring resonators and integrated optical waveguides. The χ(2) response is induced by using the nanoscale structure of the waveguide to break the bulk symmetry of silicon nitride (Si3N4) with the silicon dioxide (SiO2) cladding. Using a high-Q ring resonator cavity to enhance the efficiency of the process, we detect the second-harmonic output in the visible wavelength range with milliwatt input powers at telecom wavelengths. We also observe third-harmonic generation from the intrinsic χ(3) susceptibility of the silicon nitride. Phase matching of the harmonic processes occurs due to the near coincidence of indices of refraction of the fundamental mode at the pump frequency and the corresponding higher-order modes of the harmonic fields.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

Original Manuscript: April 28, 2011
Revised Manuscript: May 22, 2011
Manuscript Accepted: May 23, 2011
Published: May 26, 2011

Jacob S. Levy, Mark A. Foster, Alexander L. Gaeta, and Michal Lipson, "Harmonic generation in silicon nitride ring resonators," Opt. Express 19, 11415-11421 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006). [CrossRef] [PubMed]
  2. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]
  3. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004). [CrossRef] [PubMed]
  4. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007). [CrossRef]
  5. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]
  6. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008). [CrossRef] [PubMed]
  7. D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96(6), 061101–061103 (2010). [CrossRef]
  8. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical Second-Harmonic Generation in Reflection from Media with Inversion Symmetry,” Phys. Rev. 174(3), 813–822 (1968). [CrossRef]
  9. H. W. K. Tom, T. F. Heinz, and Y. R. Shen, “Second-Harmonic Reflection from Silicon Surfaces and Its Relation to Structural Symmetry,” Phys. Rev. Lett. 51(21), 1983–1986 (1983). [CrossRef]
  10. J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B Condens. Matter 35(3), 1129–1141 (1987). [CrossRef] [PubMed]
  11. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337(6207), 519–525 (1989). [CrossRef]
  12. S. Lettieri, S. D. Finizio, P. Maddalena, V. Ballarini, and F. Giorgis, “Second-harmonic generation in amorphous silicon nitride microcavities,” Appl. Phys. Lett. 81(25), 4706–4708 (2002). [CrossRef]
  13. S. Lettieri, F. Gesuele, P. Maddalena, M. Liscidini, L. C. Andreani, C. Ricciardi, V. Ballarini, and F. Giorgis, “Second-harmonic generation in hydrogenated amorphous-Si 1 - xN x doubly resonant microcavities with periodic dielectric mirrors,” Appl. Phys. Lett. 87(19), 191110 (2005). [CrossRef]
  14. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  15. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008). [CrossRef] [PubMed]
  16. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008). [CrossRef]
  17. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air silica microstructure optical fibers,” Opt. Lett. 25(11), 796–798 (2000). [CrossRef]
  18. F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber,” Opt. Lett. 26(15), 1158–1160 (2001). [CrossRef]
  19. A. Serpengüzel and S. Tanriseven, “Controlled photoluminescence in amorphous-silicon-nitride microcavities,” Appl. Phys. Lett. 78(10), 1388–1390 (2001). [CrossRef]
  20. M. Barth, N. Nusse, J. Stingl, B. Lochel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett. 93(2), 021112–021113 (2008). [CrossRef]
  21. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  22. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, San Diego, 2008).
  23. S. F. Pereira, M. Xiao, H. J. Kimble, and J. L. Hall, “Generation of squeezed light by intracavity frequency doubling,” Phys. Rev. A 38(9), 4931–4934 (1988). [CrossRef] [PubMed]
  24. N. K. Hon, K. K. Tsia, D. R. Solli, and B. Jalali, “Periodically poled silicon,” Appl. Phys. Lett. 94(9), 091116–091113 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited