OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11422–11428

Light-assisted templated self assembly using photonic crystal slabs

Camilo A. Mejia, Avik Dutt, and Michelle L. Povinelli  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11422-11428 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1118 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore a technique which we term light-assisted templated self-assembly. We calculate the optical forces on colloidal particles over a photonic crystal slab. We show that exciting a guided resonance mode of the slab yields a resonantly-enhanced, attractive optical force. We calculate the lateral optical forces above the slab and predict that stably trapped periodic patterns of particles are dependent on wavelength and polarization. Tuning the wavelength or polarization of the light source may thus allow the formation and reconfiguration of patterns. We expect that this technique may be used to design all-optically reconfigurable photonic devices.

© 2011 OSA

OCIS Codes
(220.4880) Optical design and fabrication : Optomechanics
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: May 17, 2011
Revised Manuscript: May 23, 2011
Manuscript Accepted: May 23, 2011
Published: May 26, 2011

Camilo A. Mejia, Avik Dutt, and Michelle L. Povinelli, "Light-assisted templated self assembly using photonic crystal slabs," Opt. Express 19, 11422-11428 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295(5564), 2418–2421 (2002). [CrossRef] [PubMed]
  2. Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 13(6), 409–413 (2001). [CrossRef]
  3. Y. Yin, Y. Lu, B. Gates, and Y. Xia, “Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures,” J. Am. Chem. Soc. 123(36), 8718–8729 (2001). [CrossRef] [PubMed]
  4. A. van Blaaderen, R. Ruel, and P. Wiltzius, “Tempate-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997). [CrossRef]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–292 (1986). [CrossRef] [PubMed]
  6. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987). [CrossRef] [PubMed]
  7. K. Dholakia and W. M. Lee, “Optical trapping takes shape: the use of structured light fields,” Adv. At. Mol. Opt. Phys. 56, 261–337 (2008).
  8. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  9. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999). [CrossRef]
  10. B. K. Wilson, T. Mentele, S. Bachar, E. Knouf, A. Bendoraite, M. Tewari, S. H. Pun, and L. Y. Lin, “Nanostructure-enhanced laser tweezers for efficient trapping and alignment of particles,” Opt. Express 18(15), 16005–16013 (2010). [CrossRef] [PubMed]
  11. M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006). [CrossRef]
  12. A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006). [CrossRef] [PubMed]
  13. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009). [CrossRef] [PubMed]
  14. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009). [CrossRef] [PubMed]
  15. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008). [CrossRef]
  16. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009). [CrossRef]
  17. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008). [CrossRef] [PubMed]
  18. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]
  19. P. J. Reece, V. Garces-Chavez, and K. Dholakia, “Near-field optical micromanipulation with cavity enhanced evanescent waves,” Appl. Phys. Lett. 88(22), 221116 (2006). [CrossRef]
  20. E. Lidorikis, Q. Li, and C. M. Soukoulis, “Optical bistability in colloidal crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3613–3618 (1997). [CrossRef]
  21. M. I. Antonoyiannakis and J. B. Pendry, “Electromagnetic forces in photonic crystals,” Phys. Rev. B 60(4), 2363–2374 (1999). [CrossRef]
  22. K. S. Kunz and R. J. Luebbers, The Finite-Difference Time-Domain Method for Electromagnetics (CRC Press, 1993).
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
  24. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1999).
  25. J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008). [CrossRef]
  26. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  27. K. Dholakia and P. Zemánek, “Colloquium: gripped by light: optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010). [CrossRef]
  28. M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89(25), 253114 (2006). [CrossRef]
  29. J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett. 34(4), 443–445 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited