OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11451–11456

Direct laser writing for active and passive high-Q polymer microdisks on silicon

Tobias Grossmann, Simone Schleede, Mario Hauser, Torsten Beck, Michael Thiel, Georg von Freymann, Timo Mappes, and Heinz Kalt  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11451-11456 (2011)
http://dx.doi.org/10.1364/OE.19.011451


View Full Text Article

Enhanced HTML    Acrobat PDF (1543 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the fabrication of high-Q polymeric microdisks on silicon via direct laser writing utilizing two-photon absorption induced polymerization. The quality factors of the passive cavities are above 106 in the 1300 nm wavelength region. The flexible three-dimensional (3D) lithography method allows for the fabrication of different cavity thicknesses on the same substrate, useful for rapid prototyping of active and passive optical microcavities. Microdisk lasers are realized by doping the resist with dye, resulting in laser emission at visible wavelengths.

© 2011 OSA

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(140.7300) Lasers and laser optics : Visible lasers
(160.5470) Materials : Polymers
(220.4000) Optical design and fabrication : Microstructure fabrication
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 11, 2011
Revised Manuscript: May 17, 2011
Manuscript Accepted: May 19, 2011
Published: May 27, 2011

Citation
Tobias Grossmann, Simone Schleede, Mario Hauser, Torsten Beck, Michael Thiel, Georg von Freymann, Timo Mappes, and Heinz Kalt, "Direct laser writing for active and passive high-Q polymer microdisks on silicon," Opt. Express 19, 11451-11456 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11451


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L. Schilling, R. E. Slusher, and S. Ozawa, “Polymer microdisk and microring lasers,” Opt. Lett. 20(20), 2093–2095 (1995). [CrossRef] [PubMed]
  2. M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88(3), 031108 (2006). [CrossRef]
  3. S.-Y. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18(20), 2096–2098 (2006). [CrossRef]
  4. C.-Y. Chao, W. Fung, and L. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006). [CrossRef]
  5. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002). [CrossRef]
  6. P. Rabiei and W. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15(9), 1255–1257 (2003). [CrossRef]
  7. A. L. Martin, D. K. Armani, L. Yang, and K. J. Vahala, “Replica-molded high-Q polymer microresonators,” Opt. Lett. 29(6), 533–535 (2004). [CrossRef] [PubMed]
  8. A. M. Armani, A. Srinivasan, and K. J. Vahala, “Soft lithographic fabrication of high Q polymer microcavity arrays,” Nano Lett. 7(6), 1823–1826 (2007). [CrossRef] [PubMed]
  9. T. Grossmann, M. Hauser, T. Beck, C. Gohn-Kreuz, M. Karl, H. Kalt, C. Vannahme, and T. Mappes, “High-Q conical polymeric microcavities,” Appl. Phys. Lett. 96(1), 013303 (2010). [CrossRef]
  10. C.-H. Dong, L. He, Y.-F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z.-F. Han, G.-C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009). [CrossRef]
  11. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010). [CrossRef]
  12. Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010). [CrossRef]
  13. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003). [CrossRef] [PubMed]
  14. H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett. 83(6), 1104–1106 (2003). [CrossRef]
  15. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996). [CrossRef] [PubMed]
  16. T. Grossmann, S. Schleede, M. Hauser, M. B. Christiansen, C. Vannahme, C. Eschenbaum, S. Klinkhammer, T. Beck, J. Fuchs, G. U. Nienhaus, U. Lemmer, A. Kristensen, T. Mappes, and H. Kalt, “Low-threshold conical microcavity dye lasers,” Appl. Phys. Lett. 97(6), 063304 (2010). [CrossRef]
  17. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37(31), 7352–7356 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited