OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11471–11478

Light control of silver nanoparticle’s diffusion

Silvia Albaladejo, Manuel I. Marqués, and Juan José Sáenz  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11471-11478 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1103 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The diffusion of silver nanoparticles in water at 298K inside an optical vortex lattice is analyzed in detail by numerical simulations. At power densities of the order of those used to trap nanoparticles with optical tweezers, the dynamic response shows three different regimes depending on the light wavelength. In the first one particles get trapped inside the light vortices following almost closed trajectories. In the second one, around the plasmon resonance, the diffusion constant is dramatically enhanced with respect to the Brownian motion. In the third one, at longer wavelengths, nanoparticles are confined during a few seconds in quasi-one-dimensional optical traps.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(290.0290) Scattering : Scattering
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: December 7, 2010
Revised Manuscript: April 28, 2011
Manuscript Accepted: May 9, 2011
Published: May 31, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Silvia Albaladejo, Manuel I. Marqués, and Juan José Sáenz, "Light control of silver nanoparticle’s diffusion," Opt. Express 19, 11471-11478 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998). [CrossRef]
  2. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998). [CrossRef]
  3. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, “Surface-enhanced Raman scattering,” J. Phys.: Condens. Matter 4, 1143–1212 (1992). [CrossRef]
  4. R. A. Schachar, W. Chen, B. K. Woo, B. K. Pierscionek, X. Zhang, and L. Ma, “Diffusion of nanoparticles into the capsule and cortex of a crystalline lens,” Nanotechnology 19, 1–4 (2008). [CrossRef]
  5. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994). [CrossRef] [PubMed]
  6. S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2008). [CrossRef]
  7. B. J. Yang, N. Lu, D. P. Qi, R. P. Ma, Q. Wu, J. Y. Hao, X. M. Liu, Y. Mau, V. Reboud, N. Kehagias, C. M. Sotomayor-Torres, F. Y. C. Boey, X. D. Chen, and L. F. Chi, “Metal-enhanced fluorescence,” Small 6, 1038–1043 (2010). [PubMed]
  8. C. Reichhardt and F. Nori, “Phase locking, devil’s staircases, Farey trees, and Arnold tongues in driven vortex lattices with periodic pinning,” Phys. Rev. Lett. 82, 414–417 (1999). [CrossRef]
  9. S. Ooi, S. Savelev, M. B. Gaifullin, T. Mochiku, K. Hirata, and F. Nori, “Nonlinear nanodevices using magnetic flux quanta,” Phys. Rev. Lett. 99, 207003 (2007). [CrossRef]
  10. J. L. Vega, R. Guantes, and S. Miret-Artes, “Chaos and transport properties of adatoms on solid surfaces,” J. Phys.: Condens. Matter 14, 6193–6232 (2002). [CrossRef]
  11. C.-F. Chou, O. Bakajin, S. W. P. Turner, T. A. J. Duke, S. S. Chan, E. C. Cox, H. G. Craighead, and R. H. Austin, “Sorting by diffusion: an asymmetric obstacle course for continuous molecular separation,” Proc. Natl. Acad. Sci. U.S.A. 96, 13762–13765 (1999). [CrossRef] [PubMed]
  12. L. R. Huang, J. O. Tegenfeldt, J. J. Kraeft, J. C. Sturm, R. H. Austin, and E. C. Cox, “DNA prism for high-speed continuous fractionation of large DNA molecules,” Nat. Biotechnol. 20, 1048–1051 (2002). [CrossRef] [PubMed]
  13. E. B. Cummings and A. K. Singh, “Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results,” Anal. Chem. 75, 4724–4731 (2003). [CrossRef] [PubMed]
  14. A. Ros, R. Eichhorn, J. Regtmeier, T. T. Duong, P. Reimann, and D. Anselmetti, “Brownian motion: absolute negative particle mobility,” Nature (London) 436, 190601 (2005). [CrossRef]
  15. J. Regtmeier, S. Grauwin, R. Eichhorn, P. Reimann, and A. Ros, “Acceleration of absolute negative mobility,” J. Sep. Sci. 30, 1461–1467 (2007). [CrossRef] [PubMed]
  16. P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002). [CrossRef] [PubMed]
  17. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature (London) 426, 421–424 (2005). [CrossRef]
  18. P. Tierno, A. Soba, T. H. Johansen, and F. Sagues, “Dynamic colloidal sorting on a magnetic bubble lattice,” Appl. Phys. Lett. 93, 214102 (2008). [CrossRef]
  19. K. Mangold, P. Leiderer, and C. Bechinger, “Phase transitions of colloidal monolayers in periodic pinning arrays,” Phys. Rev. Lett. 90, 158302 (2003). [CrossRef] [PubMed]
  20. S. Beil, H. H. von Grnberg, J. Dobnikar, R. Castaeda-Priego, and C. Bechinger, “Strain-induced domain formation in two-dimensional colloidal systems,” Europhys. Lett. 73, 450–454 (2006). [CrossRef]
  21. P. Tierno, T. H. Johansen, and T. M. Fischer, “Localized and delocalized motion of colloidal particles on a magnetic bubble lattice,” Phys. Rev. Lett. 99, 038303 (2007). [CrossRef] [PubMed]
  22. A. Soba, P. Tierno, T. M. Fischer, and F. Sagues, “Dynamics of a paramagnetic colloidal particle driven on a magnetic-bubble lattice,” Phys. Rev. E 77, 060401 (2008). [CrossRef]
  23. R. Prioli, A. M. F. Rivas, F. L. Freire, and A. O. Caride, “Influence of velocity in nanoscale friction processes,” Appl. Phys. A 76, 565–569 (2003). [CrossRef]
  24. P. Reimann and M. Evstigneev, “Description of atomic friction as forced Brownian motion,” New J. Phys. 7, 25–53 (2005). [CrossRef]
  25. F. Schweitzer and J. A. Holyst, “Modelling collective opinion formation by means of active Brownian particles,” Eur. Phys. J. B 15, 723–732 (2000). [CrossRef]
  26. S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell, “Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria,” Lett. Appl. Microbiol. 25, 279–283 (1997). [CrossRef] [PubMed]
  27. A. Gupta and S. Silver, “Molecular genetics: silver as a biocide: will resistance become a problem?” Nat. Biotechnol. 16, 888 (1998). [CrossRef] [PubMed]
  28. G. Leitz, E. Fallman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82, 2224–2231 (2002). [CrossRef] [PubMed]
  29. B. T. Draine, “The disctete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1998). [CrossRef]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  31. P. C Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000). [CrossRef]
  32. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102, 113602 (2009). [CrossRef] [PubMed]
  33. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16, 4991–4999 (2008). [CrossRef] [PubMed]
  34. I. Zapata, S. Albaladejo, J. M. R. Parrondo, J. J. Sáenz, and F. Sols, “Deterministic ratchet from stationary light fields,” Phys. Rev. Lett. 103, 130601 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited