OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11517–11528

The Serpentine Optical Waveguide: engineering the dispersion relations and the stopped light points

Jacob Scheuer and Ori Weiss  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11517-11528 (2011)
http://dx.doi.org/10.1364/OE.19.011517


View Full Text Article

Enhanced HTML    Acrobat PDF (1329 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero vg points are found and presented.

© 2011 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(260.2030) Physical optics : Dispersion

ToC Category:
Integrated Optics

History
Original Manuscript: March 22, 2011
Revised Manuscript: May 2, 2011
Manuscript Accepted: May 24, 2011
Published: May 31, 2011

Citation
Jacob Scheuer and Ori Weiss, "The Serpentine Optical Waveguide: engineering the dispersion relations and the stopped light points," Opt. Express 19, 11517-11528 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11517


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  2. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999). [CrossRef]
  3. J. E. Heebner and R. W. Boyd, “'Slow’ and 'fast' light in resonator-coupled waveguides,” J. Mod. Opt. 49(14), 2629–2636 (2002). [CrossRef]
  4. A. Melloni, F. Morichetti, and M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35(4/5), 365–379 (2003). [CrossRef]
  5. J. Scheuer, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled resonator optical waveguides: towards slowing and storing of light,” Opt. Photon. News 16(2), 36–40 (2005). [CrossRef]
  6. J. Heebner, P. Chak, S. Pereira, J. Sipe, and R. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optics,” J. Opt. Soc. Am. B 21(10), 1818–1832 (2004). [CrossRef]
  7. M. F. Yanik and S. H. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004). [CrossRef] [PubMed]
  8. B. Z. Steinberg, “Rotating photonic crystals: a medium for compact optical gyroscopes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(5), 056621 (2005). [CrossRef] [PubMed]
  9. J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96(5), 053901 (2006). [CrossRef] [PubMed]
  10. B. Z. Steinberg, J. Scheuer, and A. Boag, “Rotation-induced superstructure in slow-light waveguides with mode-degeneracy: optical gyroscopes with exponential sensitivity,” J. Opt. Soc. Am. B 24(5), 1216–1224 (2007). [CrossRef]
  11. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997). [CrossRef]
  12. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P. T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12(3), 320–322 (2000). [CrossRef]
  13. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), 36–38 (2003). [CrossRef]
  14. R. C. Polson, G. Levina, and Z. V. Vardeny, “Spectral analysis of polymer microring lasers,” Appl. Phys. Lett. 76(26), 3858–3860 (2000). [CrossRef]
  15. X. Fengnian, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65–71 (2006).
  16. J. Heebner, R. Boyd, and Q. Park, “SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,” J. Opt. Soc. Am. B 19(4), 722–731 (2002). [CrossRef]
  17. S. Ha, A. A. Sukhorukov, K. B. Dossou, L. C. Botten, A. V. Lavrinenko, D. N. Chigrin, and Y. S. Kivshar, “Dispersionless tunneling of slow light in antisymmetric photonic crystal couplers,” Opt. Express 16(2), 1104–1114 (2008). [CrossRef] [PubMed]
  18. A. A. Sukhorukov, A. V. Lavrinenko, D. N. Chigrin, D. E. Pelinovsky, and Y. S. Kivshar, “Slow-light dispersion in coupled periodic waveguides,” J. Opt. Soc. Am. B 25(12), C65–C74 (2008). [CrossRef]
  19. P. Chak, J. K. Poon, and A. Yariv, “Optical bright and dark states in side-coupled resonator structures,” Opt. Lett. 32(13), 1785–1787 (2007). [CrossRef] [PubMed]
  20. O. Weiss and J. Scheuer, “Side coupled adjacent resonators CROW--formation of mid-band zero group velocity,” Opt. Express 17(17), 14817–14824 (2009). [CrossRef] [PubMed]
  21. M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005). [CrossRef] [PubMed]
  22. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994). [CrossRef]
  23. A. G. Yamilov, M. R. Herrera, and M. F. Bertino, “Slow-light effect in dual-periodic photonic lattice,” J. Opt. Soc. Am. B 25(4), 599–608 (2008). [CrossRef]
  24. K. Sakoda, “Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express 4(5), 167–176 (1999). [CrossRef] [PubMed]
  25. S. Nojima, “Enhancement of optical gain in two dimensional photonic crystal with active lattice points,” Jpn. J. Appl. Phys. 37(Part 2, No. 5B), L565–L567 (1998). [CrossRef]
  26. S. Mookherjea, “Semiconductor coupled-resonator optical waveguide laser,” Appl. Phys. Lett. 84(17), 3265–3267 (2004). [CrossRef]
  27. J. B. Khurgin, “Dispersion and loss limitations on the performance of optical delay lines based on coupled resonant structures,” Opt. Lett. 32(2), 133–135 (2007). [CrossRef]
  28. D. Miller, “Fundamental limit for optical components,” J. Opt. Soc. Am. B 24(10), A1–A18 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (13939 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited