OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11529–11538

Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen  »View Author Affiliations

Optics Express, Vol. 19, Issue 12, pp. 11529-11538 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1526 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When silicon strip and slot waveguides are coated with a 50nm amorphous titanium dioxide (TiO2) film, measured losses at a wavelength of 1.55 μm can be as low as (2 ± 1)dB/cm and (7 ± 2)dB/cm, respectively. We use atomic layer deposition (ALD), estimate the effect of ALD growth on the surface roughness, and discuss the effect on the scattering losses. Because the gap between the rails of a slot waveguide narrows by the TiO2 deposition, the effective slot width can be back-end controlled. This is useful for precise adjustment if the slot is to be filled with, e. g., a nonlinear organic material or with a sensitizer for sensors applications.

© 2011 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(230.7370) Optical devices : Waveguides
(240.5770) Optics at surfaces : Roughness
(310.2785) Thin films : Guided wave applications
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Integrated Optics

Original Manuscript: March 22, 2011
Revised Manuscript: May 14, 2011
Manuscript Accepted: May 25, 2011
Published: May 31, 2011

T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, and S. Honkanen, "Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition," Opt. Express 19, 11529-11538 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef] [PubMed]
  2. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004). [CrossRef] [PubMed]
  3. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32, 3080–3082 (2007). [CrossRef] [PubMed]
  4. P. Bienstman, “Label-free biosensing with a slot-waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009). [CrossRef]
  5. T. Alasaarela, A. Säynätjoki, T. Hakkarainen, and S. Honkanen, “Feature size reduction of silicon slot waveguides by partial filling using atomic layer deposition,” Opt. Eng. 48, 080502 (2009). [CrossRef]
  6. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Saynatjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt. 49, 4321–4325 (2010). [CrossRef] [PubMed]
  7. J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology - a platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009). [CrossRef]
  8. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics 3, 216 (2009). [CrossRef]
  9. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006). [CrossRef]
  10. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994). [CrossRef]
  11. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617 (2000). [CrossRef]
  12. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001). [CrossRef]
  13. D. Sparacin, S. Spector, and L. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005). [CrossRef]
  14. K. P. Yap, A. Delâge, J. Lapointe, B. Lamontagne, J. H. Schmid, P. Waldron, B. A. Syrett, and S. Janz, “Correlation of scattering loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides,” J. Lightwave Technol. 27, 3999–4008 (2009). [CrossRef]
  15. F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891–896 (2006). [CrossRef]
  16. J. Schrauwen, J. V. Lysebettens, T. Claes, K. D. Vos, P. Bienstman, D. V. Thourhout, and R. Baets, “Focused-ion-beam fabrication of slots in silicon waveguides and ring resonators,” IEEE Photon. Technol. Lett. 20, 2004–2006 (2008). [CrossRef]
  17. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16, 1661–1663 (2004). [CrossRef]
  18. ePIXfab silicon photonics shuttle service, http://www.epixfab.eu/ .
  19. FIMMWAVE by Photon Design, http://www.photond.com/ .
  20. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited