OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11545–11557

Enhanced transmission through subwavelength apertures by excitation of particle localized plasmons and nanojets

F. J. Valdivia-Valero and M. Nieto-Vesperinas  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11545-11557 (2011)
http://dx.doi.org/10.1364/OE.19.011545


View Full Text Article

Enhanced HTML    Acrobat PDF (2755 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study, and illustrate with numerical calculations, transmission enhancement by subwavelength 2D slits due to the dominant role played by the excitation of the eigenmodes of plasmonic cylinders when they are placed at the aperture entrance; and also due to reinforced and highly localized energy in the slit as a consequence of the formation of a nanojet. We show that, providing the illumination is chosen such that an aperture transmitting eigenmode is generated, the phenomenon is independent of whether or not the slit alone produces extraordinary transmission; although in the former case this enhancement will add to this slit supertransmission. We address several particle sizes, and emphasize the universality of this phenomenon with different materials.

© 2011 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(050.6624) Diffraction and gratings : Subwavelength structures
(250.6715) Optoelectronics : Switching

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 30, 2011
Manuscript Accepted: April 22, 2011
Published: May 31, 2011

Citation
F. J. Valdivia-Valero and M. Nieto-Vesperinas, "Enhanced transmission through subwavelength apertures by excitation of particle localized plasmons and nanojets," Opt. Express 19, 11545-11557 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. J. Garcia de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82729–787 (2010). [CrossRef]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998). [CrossRef]
  4. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944). [CrossRef]
  5. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef] [PubMed]
  6. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef] [PubMed]
  7. F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002). [PubMed]
  8. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  9. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission throughelliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004). [CrossRef] [PubMed]
  10. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single sub-wavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004). [CrossRef]
  11. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004). [CrossRef] [PubMed]
  12. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005). [CrossRef] [PubMed]
  13. K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73, 033401 (2006). [CrossRef]
  14. A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antennas Propag . 54, 1632–1643 (2006). [CrossRef]
  15. J. Gomez-Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003). [CrossRef]
  16. A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95, 052103 (2009). [CrossRef]
  17. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009). [CrossRef] [PubMed]
  18. D. Ates, A. O. Cakmak, E. Colak, R. Zhao, C. M. Soukoulis, and E. Ozbay, “Transmission enhancement through deep subwavelength apertures using connected split ring resonators,” Opt. Express 18, 3952–3966 (2010). [CrossRef] [PubMed]
  19. Y. Q. Ye and Y. Jin, “Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film,” Phys. Rev. E 80, 036606 (2009). [CrossRef]
  20. E. Di Gennaro, I. Gallina, A. Andreone, G. Castaldi, and V. Galdi, “Experimental evidence of cut-wire-induced enhanced transmission of transverse-electric fields through sub-wavelength slits in a thin metallic screen,” Opt. Express 18, 26769–26774 (2010). [CrossRef]
  21. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a poetential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004). [CrossRef] [PubMed]
  22. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533 (2005). [CrossRef] [PubMed]
  23. Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31, 196–198 (2006). [CrossRef] [PubMed]
  24. A. Heifetz, S. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009). [CrossRef] [PubMed]
  25. M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75, 3302–3307 (1994). [CrossRef]
  26. J. L. Garcia-Pomar and M. Nieto-Vesperinas, “Waveguiding, collimation and subwavelength concentration in photonic crystals,” Opt. Express 13, 7997–8007 (2005). [CrossRef] [PubMed]
  27. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission,” Opt. Express 18, 6740–6754 (2010). [CrossRef] [PubMed]
  28. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  29. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  30. N. Garcia and M. Nieto-Vesperinas, “Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,” J. Opt. A: Pure Appl. Opt. J. Opt. A, Pure Appl. Opt . 9, 490–495 (2007).
  31. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Whispering gallery mode propagation in photonic crystals in front of subwavelength slit arrays. Interplay with extraordinary transmission,” Opt. Commun. 284, 1726–1733 (2011). [CrossRef]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1998).
  33. J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Opt. Express 13, 7035–7044 (2005). [CrossRef] [PubMed]
  34. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95, 117401 (2005). [CrossRef] [PubMed]
  35. J. Wenger, D. Gerard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 5, 3008–3020 (2008). [CrossRef]
  36. B. D. Terris, H. J. Manin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near - field optical data storage using a solid inmersionlens,” Appl. Phys. Lett. 85, 25–27 (1994).
  37. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited