OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11584–11590

On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses

Lin Zhang, Yan Yan, Yang Yue, Qiang Lin, Oskar Painter, Raymond G. Beausoleil, and Alan E. Willner  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11584-11590 (2011)
http://dx.doi.org/10.1364/OE.19.011584


View Full Text Article

Enhanced HTML    Acrobat PDF (968 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dramatic advances in supercontinuum generation have been made recently using photonic crystal fibers, but it is quite challenging to obtain an octave-spanning supercontinuum on a chip, partially because of strong dispersion in high-index-contrast nonlinear integrated waveguides. We show by simulation that extremely flat and low dispersion can be achieved in silicon nitride slot waveguides over a wavelength band of 500 nm. Different from most of previously reported supercontinua that were generated either by higher-order soliton fission in anomalous dispersion regime or by self-phase modulation in normal dispersion regime, a two-octave supercontinuum from 630 to 2650 nm (360 THz in total) can be generated by enhancing self-steepening in pulse propagation in nearly zero dispersion regime, when an optical shock as short as 3 fs is formed.

© 2011 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.3120) Integrated optics : Integrated optics devices
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Integrated Optics

History
Original Manuscript: April 20, 2011
Manuscript Accepted: May 26, 2011
Published: May 31, 2011

Citation
Lin Zhang, Yan Yan, Yang Yue, Qiang Lin, Oskar Painter, Raymond G. Beausoleil, and Alan E. Willner, "On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses," Opt. Express 19, 11584-11590 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11584


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef]
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  3. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000). [CrossRef]
  4. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95(16), 161103 (2009). [CrossRef]
  5. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003). [CrossRef] [PubMed]
  6. M. L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express 14(10), 4445–4451 (2006). [CrossRef] [PubMed]
  7. W.-Q. Zhang, S. Afshar V, and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express 17(21), 19311–19327 (2009). [CrossRef]
  8. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010). [CrossRef]
  9. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011). [CrossRef]
  10. Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12(17), 4094–4102 (2004). [CrossRef] [PubMed]
  11. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32(4), 391–393 (2007). [CrossRef] [PubMed]
  12. I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007). [CrossRef] [PubMed]
  13. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008). [CrossRef] [PubMed]
  14. D. Duchesne, M. Peccianti, M. R. E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express 18(2), 923–930 (2010). [CrossRef] [PubMed]
  15. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18(19), 20529–20534 (2010). [CrossRef] [PubMed]
  16. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010). [CrossRef]
  17. G. Genty, P. Kinsler, B. Kibler, and J. M. Dudley, “Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides,” Opt. Express 15(9), 5382–5387 (2007). [CrossRef] [PubMed]
  18. S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media,” J. Opt. Soc. Am. B 27(9), 1707–1711 (2010). [CrossRef]
  19. G. Genty, B. Kibler, P. Kinsler, and J. M. Dudley, “Harmonic extended supercontinuum generation and carrier envelope phase dependent spectral broadening in silica nanowires,” Opt. Express 16(15), 10886–10893 (2008). [CrossRef] [PubMed]
  20. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010). [CrossRef]
  21. J. C. A. Tyrrell, P. Kinsler, and G. H. C. New, “Pseudospectral spatial-domain: a new method for nonlinear pulse propagation in the few-cycle regime with arbitrary dispersion,” J. Mod. Opt. 52(7), 973–986 (2005). [CrossRef]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  23. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). [CrossRef]
  24. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008). [CrossRef] [PubMed]
  25. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009). [CrossRef] [PubMed]
  26. Y. Wang, R. Yue, H. Han, and X. Liao, “Raman study of structural order of a-SiNx:H and its change upon thermal annealing,” J. Non-Cryst. Solids 291(1-2), 107–112 (2001). [CrossRef]
  27. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84(16), 3582–3585 (2000). [CrossRef] [PubMed]
  28. N. Aközbek, A. Iwasaki, A. Becker, M. Scalora, S. L. Chin, and C. M. Bowden, “Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses,” Phys. Rev. Lett. 89(14), 143901 (2002). [CrossRef] [PubMed]
  29. V. Roppo, M. Centini, C. Sibilia, M. Bertolotti, D. de Ceglia, M. Scalora, N. Akozbek, M. J. Bloemer, J. W. Haus, O. G. Kosareva, and V. P. Kandidov, “Role of phase matching in pulsed second-harmonic generation: walk-off and phase-locked twin pulses in negative-index media,” Phys. Rev. A 76(3), 033829 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited