OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 12 — Jun. 6, 2011
  • pp: 11591–11596

Optical vortex converter with helical-periodically poled ferroelectric crystal

Linghao Tian, Fangwei Ye, and Xianfeng Chen  »View Author Affiliations


Optics Express, Vol. 19, Issue 12, pp. 11591-11596 (2011)
http://dx.doi.org/10.1364/OE.19.011591


View Full Text Article

Enhanced HTML    Acrobat PDF (1030 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A kind of optical vortex converter is proposed in helical-periodically poled ferroelectric crystal based on transverse electro-optics effect. It can be used to generate optical vortex from non-vortex beam and transform the topological charge of optical vortex. An optical vortex adder or substrator is proposed under the control of electric filed. This device will find its applications in high dimensional communication system for signal processing and optical manipulation in micro and mesoscopic scale.

© 2011 OSA

OCIS Codes
(160.2100) Materials : Electro-optical materials
(190.0190) Nonlinear optics : Nonlinear optics
(080.4865) Geometric optics : Optical vortices

ToC Category:
Optical Devices

History
Original Manuscript: April 8, 2011
Revised Manuscript: May 10, 2011
Manuscript Accepted: May 10, 2011
Published: June 1, 2011

Citation
Linghao Tian, Fangwei Ye, and Xianfeng Chen, "Optical vortex converter with helical-periodically poled ferroelectric crystal," Opt. Express 19, 11591-11596 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-12-11591


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Barnett, “Optical angular-momentum flux,” J. Opt. B Quantum Semiclassical Opt. 4(2), S7– S16 (2002). [CrossRef]
  2. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936). [CrossRef]
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  5. G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007). [CrossRef] [PubMed]
  6. R. J. Voogd, M. Singh, S. F. Pereira, A. S. van de Nes, and J. J. M. Braat, “The use of orbital angular momentum of light beams for super-high density optical data storage,” in OSA Annual Meeting FTuG14(Optical Society of America, Rochester, New York, 2004).
  7. A. Vaziri, J.-W. Pan, T. Jennewein, G. Weihs, and A. Zeilinger, “Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum,” Phys. Rev. Lett. 91(22), 227902 (2003). [CrossRef] [PubMed]
  8. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007). [CrossRef]
  9. G. Molina-Terriza, A. Vaziri, J. Rehácek, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92(16), 167903 (2004). [CrossRef] [PubMed]
  10. M. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993). [CrossRef]
  11. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221–223 (1992). [CrossRef] [PubMed]
  12. M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112(5-6), 321–327 (1994). [CrossRef]
  13. N. Heckenberg, R. McDuff, C. Smith, H. Rubinsztein-Dunlop, and M. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24(9), S951– S962 (1992). [CrossRef]
  14. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006). [CrossRef] [PubMed]
  15. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996). [CrossRef] [PubMed]
  16. J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997). [CrossRef]
  17. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999). [CrossRef]
  18. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001). [CrossRef] [PubMed]
  19. A. Bahabad and A. Arie, “Generation of optical vortex beams by nonlinear wave mixing,” Opt. Express 15(26), 17619–17624 (2007). [CrossRef] [PubMed]
  20. G. L. Zheng, H. C. Wang, and W. L. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Express 14(12), 5535–5540 (2006). [CrossRef] [PubMed]
  21. S. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997). [CrossRef]
  22. K. Liu, J. H. Shi, and X. F. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009). [CrossRef]
  23. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000). [CrossRef]
  24. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22(1), 52–54 (1997). [CrossRef] [PubMed]
  25. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn: LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett. 17(5), 1049–1051 (2005). [CrossRef]
  26. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88(1), 013601 (2001). [CrossRef]
  27. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  28. G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited